HarshitSundriyal's picture
updated code space
f52e3df
raw
history blame
4.51 kB
import os
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage
from langchain.tools import tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from dotenv import load_dotenv
# Load environment variables from .env
load_dotenv()
# Initialize LLM
def initialize_llm():
llm = ChatGroq(
temperature=0,
model_name="qwen-qwq-32b",
groq_api_key=os.getenv("GROQ_API_KEY")
)
return llm
# Initialize Tavily Search Tool
def initialize_search_tool():
return TavilySearchResults()
# Weather tool
def get_weather(location: str, search_tool: TavilySearchResults = None) -> str:
if search_tool is None:
search_tool = initialize_search_tool()
query = f"current weather in {location}"
return search_tool.run(query)
# Recommendation chain
def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
recommendation_prompt = ChatPromptTemplate.from_template("""
You are a helpful assistant that gives weather-based advice.
Given the current weather condition: "{weather_condition}", provide:
1. Clothing or activity recommendations suited for this weather.
2. At least one health tip to stay safe or comfortable in this condition.
Be concise and clear.
""")
return recommendation_prompt | llm
def get_recommendation(weather_condition: str, recommendation_chain: Runnable = None) -> str:
if recommendation_chain is None:
llm = initialize_llm()
recommendation_chain = initialize_recommendation_chain(llm)
return recommendation_chain.invoke({"weather_condition": weather_condition})
# Math tools
@tool
def add(x: int, y: int) -> int:
return x + y
@tool
def subtract(x: int, y: int) -> int:
return x - y
@tool
def multiply(x: int, y: int) -> int:
return x * y
@tool
def divide(x: int, y: int) -> float:
if y == 0:
raise ValueError("Cannot divide by zero.")
return x / y
@tool
def square(x: int) -> int:
return x * x
@tool
def cube(x: int) -> int:
return x * x * x
@tool
def power(x: int, y: int) -> int:
return x ** y
@tool
def factorial(n: int) -> int:
if n < 0:
raise ValueError("Factorial is not defined for negative numbers.")
if n == 0 or n == 1:
return 1
result = 1
for i in range(2, n + 1):
result *= i
return result
@tool
def mean(numbers: list) -> float:
if not numbers:
raise ValueError("The list is empty.")
return sum(numbers) / len(numbers)
@tool
def standard_deviation(numbers: list) -> float:
if not numbers:
raise ValueError("The list is empty.")
mean_value = mean(numbers)
variance = sum((x - mean_value) ** 2 for x in numbers) / len(numbers)
return variance ** 0.5
# Build the LangGraph
def build_graph():
llm = initialize_llm()
search_tool = initialize_search_tool()
recommendation_chain = initialize_recommendation_chain(llm)
@tool
def weather_tool(location: str) -> str:
return get_weather(location, search_tool)
@tool
def recommendation_tool(weather_condition: str) -> str:
return get_recommendation(weather_condition, recommendation_chain)
tools = [weather_tool, recommendation_tool, add, subtract, multiply, divide, square, cube, power, factorial, mean, standard_deviation]
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
print("Entering assistant node...")
response = llm_with_tools.invoke(state["messages"])
print(f"Assistant says: {response.content}")
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.set_entry_point("assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
graph = build_graph()
question = "What is the factorial of 6 and can you also tell me the weather in Paris?"
messages = [HumanMessage(content=question)]
result = graph.invoke({"messages": messages})
for msg in result["messages"]:
msg.pretty_print()