GPT / app.py
Hashim998's picture
Create app.py
bbf1b06 verified
import os
import uuid
import json
import time
import gradio as gr
import logging
# Load local .env only if it exists
from dotenv import load_dotenv
load_dotenv()
import google.generativeai as genai
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
MessagesPlaceholder,
HumanMessagePromptTemplate,
)
from langchain_google_genai import ChatGoogleGenerativeAI
# === Logging ===
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# === Load API Key ===
os.environ["GOOGLE_API_KEY"] = os.getenv["GEMINI_API_KEY"]
# GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# if not GEMINI_API_KEY:
#raise ValueError("GEMINI_API_KEY is missing. Set it as an environment variable or Hugging Face Secret.")
genai.configure(api_key=GEMINI_API_KEY)
# === Chat Storage ===
HISTORY_FILE = "chat_history.json"
def load_all_sessions():
if os.path.exists(HISTORY_FILE):
with open(HISTORY_FILE, "r", encoding="utf-8") as f:
return json.load(f)
return {}
def save_all_sessions(sessions):
with open(HISTORY_FILE, "w", encoding="utf-8") as f:
json.dump(sessions, f, indent=2)
sessions = load_all_sessions()
# === Gemini LLM Chatbot ===
class GeminiChatbot:
def __init__(self):
self.setup_model()
def setup_model(self):
system_template = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
Your answers should be informative, engaging, and accurate. If a question doesn't make any sense, or isn't factually coherent, explain why.
If you don't know the answer to a question, please don't share false information.
"""
self.prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(system_template),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template("{input}")
])
self.model = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0.7,
top_p=0.95,
google_api_key=GEMINI_API_KEY,
convert_system_message_to_human=True
)
def call_model(state: MessagesState):
chat_history = state["messages"][:-1]
user_input = state["messages"][-1].content
formatted_messages = self.prompt.format_messages(chat_history=chat_history, input=user_input)
response = self.model.invoke(formatted_messages)
return {"messages": response}
workflow = StateGraph(state_schema=MessagesState)
workflow.add_node("model", call_model)
workflow.add_edge(START, "model")
self.memory = MemorySaver()
self.app = workflow.compile(checkpointer=self.memory)
def get_response(self, user_message, history, thread_id):
from langchain_core.messages import HumanMessage, AIMessage
try:
# Format chat history for LangChain
langchain_history = []
for user, bot in history:
langchain_history.append(HumanMessage(content=user))
langchain_history.append(AIMessage(content=bot))
input_msg = HumanMessage(content=user_message)
full_history = langchain_history + [input_msg]
config = {"configurable": {"thread_id": thread_id}}
# Get final response
response = self.app.invoke({"messages": full_history}, config)
full_text = response["messages"][-1].content
full_response = ""
for char in full_text:
full_response += char
yield full_response
time.sleep(0.01)
except Exception as e:
logger.error(f"Response error: {e}")
yield f"⚠ Error: {type(e).__name__}{str(e)}"
chatbot = GeminiChatbot()
# === Gradio UI ===
def launch_interface():
with gr.Blocks(
theme=gr.themes.Base(),
css="""
body { background-color: black; }
.gr-textbox textarea { background-color: #2f2f2f; color: white; }
.gr-chatbot { background-color: #2f2f2f; color: white; }
.gr-button, .gr-dropdown {
margin: 5px auto;
display: block;
width: 50%;
}
.gr-markdown h2 { text-align: center; color: white; }
"""
) as demo:
demo.title = "LangChain Powered ChatBot"
gr.Markdown("## LangChain Powered ChatBot")
current_thread_id = gr.State()
session_names = gr.State()
history = gr.State([])
if not sessions:
new_id = str(uuid.uuid4())
sessions[new_id] = []
save_all_sessions(sessions)
current_thread_id.value = new_id
session_names.value = [f"NEW: {new_id}"]
else:
current_thread_id.value = next(iter(sessions))
session_names.value = [f"PREVIOUS: {k}" for k in sessions if sessions[k]]
def get_dropdown_choices():
return [f"PREVIOUS: {k}" for k in sessions if sessions[k]] + [f"NEW: {current_thread_id.value}"]
# UI
new_chat_btn = gr.Button("New Chat", variant="primary")
session_selector = gr.Dropdown(
label="Chats",
choices=get_dropdown_choices(),
value=f"NEW: {current_thread_id.value}",
interactive=True
)
chatbot_ui = gr.Chatbot(label="Conversation", height=350)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question...", container=False, scale=9)
send = gr.Button("Send", variant="primary", scale=1)
clear = gr.Button("Clear Current Chat")
# === Event Functions ===
def start_new_chat():
new_id = str(uuid.uuid4())
sessions[new_id] = []
save_all_sessions(sessions)
display = f"NEW: {new_id}"
updated = [f"PREVIOUS: {k}" for k in sessions if sessions[k]] + [display]
return new_id, [], gr.update(choices=updated, value=display), display
def switch_chat(display_id):
true_id = display_id.split(": ", 1)[-1]
return true_id, sessions.get(true_id, []), display_id
def respond(message, history, thread_id):
if not message.strip():
yield history
return
history.append((message, ""))
yield history
for chunk in chatbot.get_response(message, history[:-1], thread_id):
history[-1] = (message, chunk)
yield history
sessions[thread_id] = history
save_all_sessions(sessions)
def clear_chat(thread_id):
sessions[thread_id] = []
save_all_sessions(sessions)
return []
# === Bind Events ===
new_chat_btn.click(start_new_chat, outputs=[current_thread_id, chatbot_ui, session_selector, session_selector])
session_selector.change(switch_chat, inputs=session_selector, outputs=[current_thread_id, chatbot_ui, session_selector])
send.click(respond, [msg, chatbot_ui, current_thread_id], [chatbot_ui]).then(lambda: "", None, msg)
msg.submit(respond, [msg, chatbot_ui, current_thread_id], [chatbot_ui]).then(lambda: "", None, msg)
clear.click(clear_chat, inputs=[current_thread_id], outputs=[chatbot_ui])
return demo
# === Run App ===
if __name__ == "__main__":
try:
demo = launch_interface()
demo.launch()
except Exception as e:
logger.critical(f"App failed: {e}")