Spaces:
Running
Running
File size: 6,606 Bytes
ac5d8ef 7cc1bf1 ac5d8ef 0bdff11 534457f 0bdff11 ac5d8ef 0bdff11 ac5d8ef 0bdff11 ad7d928 0bdff11 ac5d8ef b4b574c d50fb7e 0bdff11 ac5d8ef e4a9ff0 0bdff11 e4a9ff0 534457f e4a9ff0 0bdff11 e4a9ff0 ac5d8ef 0bdff11 ac5d8ef e4a9ff0 ac5d8ef ad7d928 0bdff11 7cc1bf1 0bdff11 ad7d928 534457f ad7d928 0bdff11 ad7d928 0bdff11 ad7d928 0bdff11 ad7d928 0bdff11 ad7d928 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from fastapi import FastAPI, Request, Header, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.openapi.utils import get_openapi
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from fastapi import Query
from transformers import pipeline
import os, logging, traceback
from model import (
summarize_review, smart_summarize, detect_industry,
detect_product_category, answer_followup, detect_emotion
)
from typing import Optional, List, Union
app = FastAPI(
title="\U0001f9e0 NeuroPulse AI",
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
version="2025.1.0",
openapi_url="/openapi.json",
docs_url=None,
redoc_url="/redoc"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.exception_handler(Exception)
async def exception_handler(request: Request, exc: Exception):
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
@app.get("/docs", include_in_schema=False)
def custom_swagger_ui():
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title="\U0001f9e0 Swagger UI - NeuroPulse AI",
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
)
@app.get("/", response_class=HTMLResponse)
def root():
return "<h1>NeuroPulse AI Backend is Running</h1>"
class ReviewInput(BaseModel):
text: str
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[str] = None
aspects: bool = False
follow_up: Optional[Union[str, List[str]]] = None
product_category: Optional[str] = None
device: Optional[str] = None
intelligence: Optional[bool] = False
verbosity: Optional[str] = "detailed"
class BulkReviewInput(BaseModel):
reviews: List[str]
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[List[str]] = None
aspects: bool = False
product_category: Optional[List[str]] = None
device: Optional[List[str]] = None
follow_up: Optional[List[Union[str, List[str]]]] = None
intelligence: Optional[bool] = False
VALID_API_KEY = "my-secret-key"
logging.basicConfig(level=logging.INFO)
def auto_fill(value: Optional[str], fallback: str) -> str:
if not value or value.lower() == "auto-detect":
return fallback
return value
@app.post("/analyze/")
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
if x_api_key and x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="β Invalid API key")
if len(data.text.split()) < 20:
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 20 words).")
try:
response = {}
if not data.follow_up:
summary = (
summarize_review(data.text, max_len=40, min_len=8)
if data.verbosity.lower() == "brief"
else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
)
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
sentiment = sentiment_pipeline(data.text)[0]
emotion = detect_emotion(data.text)
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
device = "Web"
response = {
"summary": summary,
"sentiment": sentiment,
"emotion": emotion,
"product_category": product_category,
"device": device,
"industry": industry
}
if data.follow_up:
response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
return response
except Exception as e:
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
@app.post("/bulk/")
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
if token != VALID_API_KEY:
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API token")
try:
results = []
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
for i, review_text in enumerate(data.reviews):
if len(review_text.split()) < 20:
results.append({
"review": review_text,
"error": "Too short to analyze"
})
continue
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
sentiment = sentiment_pipeline(review_text)[0]
emotion = detect_emotion(review_text)
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
dev = auto_fill(data.device[i] if data.device else None, "Web")
result = {
"review": review_text,
"summary": summary,
"sentiment": sentiment["label"],
"score": sentiment["score"],
"emotion": emotion,
"industry": ind,
"product_category": prod,
"device": dev
}
if data.follow_up and i < len(data.follow_up):
follow_q = data.follow_up[i]
result["follow_up"] = answer_followup(review_text, follow_q)
results.append(result)
return {"results": results}
except Exception as e:
logging.error(f"π₯ Bulk processing failed: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|