Spaces:
Running
Running
Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request, Header, HTTPException
|
2 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
3 |
+
from fastapi.openapi.utils import get_openapi
|
4 |
+
from fastapi.openapi.docs import get_swagger_ui_html
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from transformers import pipeline
|
8 |
+
import os, logging, traceback
|
9 |
+
from model import summarize_review, smart_summarize, detect_industry, detect_product_category, answer_followup
|
10 |
+
from typing import Optional, List
|
11 |
+
|
12 |
+
app = FastAPI(
|
13 |
+
title="\U0001f9e0 NeuroPulse AI",
|
14 |
+
description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
|
15 |
+
version="2025.1.0",
|
16 |
+
openapi_url="/openapi.json",
|
17 |
+
docs_url=None,
|
18 |
+
redoc_url="/redoc"
|
19 |
+
)
|
20 |
+
|
21 |
+
app.add_middleware(
|
22 |
+
CORSMiddleware,
|
23 |
+
allow_origins=["*"],
|
24 |
+
allow_credentials=True,
|
25 |
+
allow_methods=["*"],
|
26 |
+
allow_headers=["*"],
|
27 |
+
)
|
28 |
+
|
29 |
+
@app.exception_handler(Exception)
|
30 |
+
async def exception_handler(request: Request, exc: Exception):
|
31 |
+
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
|
32 |
+
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
|
33 |
+
|
34 |
+
@app.get("/docs", include_in_schema=False)
|
35 |
+
def custom_swagger_ui():
|
36 |
+
return get_swagger_ui_html(
|
37 |
+
openapi_url=app.openapi_url,
|
38 |
+
title="\U0001f9e0 Swagger UI - NeuroPulse AI",
|
39 |
+
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
40 |
+
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
|
41 |
+
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
|
42 |
+
)
|
43 |
+
|
44 |
+
@app.get("/", response_class=HTMLResponse)
|
45 |
+
def root():
|
46 |
+
return "<h1>NeuroPulse AI Backend is Running</h1>"
|
47 |
+
|
48 |
+
class ReviewInput(BaseModel):
|
49 |
+
text: str
|
50 |
+
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
|
51 |
+
industry: Optional[str] = None
|
52 |
+
aspects: bool = False
|
53 |
+
follow_up: Optional[str] = None
|
54 |
+
product_category: Optional[str] = None
|
55 |
+
device: Optional[str] = None
|
56 |
+
intelligence: Optional[bool] = False
|
57 |
+
verbosity: Optional[str] = "detailed"
|
58 |
+
explain: Optional[bool] = False
|
59 |
+
|
60 |
+
class BulkReviewInput(BaseModel):
|
61 |
+
reviews: List[str]
|
62 |
+
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
|
63 |
+
industry: Optional[List[str]] = None
|
64 |
+
aspects: bool = False
|
65 |
+
product_category: Optional[List[str]] = None
|
66 |
+
device: Optional[List[str]] = None
|
67 |
+
|
68 |
+
VALID_API_KEY = "my-secret-key"
|
69 |
+
logging.basicConfig(level=logging.INFO)
|
70 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
71 |
+
|
72 |
+
def auto_fill(value: Optional[str], fallback: str) -> str:
|
73 |
+
if not value or value.lower() == "auto-detect":
|
74 |
+
return fallback
|
75 |
+
return value
|
76 |
+
|
77 |
+
@app.post("/analyze/")
|
78 |
+
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
79 |
+
if x_api_key != VALID_API_KEY:
|
80 |
+
raise HTTPException(status_code=401, detail="❌ Unauthorized: Invalid API key")
|
81 |
+
if len(data.text.split()) < 20:
|
82 |
+
raise HTTPException(status_code=400, detail="⚠️ Review too short for analysis (min. 20 words).")
|
83 |
+
|
84 |
+
try:
|
85 |
+
# Smart summary logic based on verbosity and intelligence
|
86 |
+
if data.verbosity.lower() == "brief":
|
87 |
+
summary = summarize_review(data.text, max_len=40, min_len=8)
|
88 |
+
else:
|
89 |
+
summary = smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
|
90 |
+
|
91 |
+
sentiment = sentiment_pipeline(data.text)[0]
|
92 |
+
emotion = "joy"
|
93 |
+
|
94 |
+
# Auto-detection logic
|
95 |
+
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
|
96 |
+
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
|
97 |
+
device = "Web"
|
98 |
+
|
99 |
+
follow_up_response = None
|
100 |
+
if data.follow_up:
|
101 |
+
follow_up_response = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
|
102 |
+
|
103 |
+
return {
|
104 |
+
"summary": summary,
|
105 |
+
"sentiment": sentiment,
|
106 |
+
"emotion": emotion,
|
107 |
+
"product_category": product_category,
|
108 |
+
"device": device,
|
109 |
+
"industry": industry,
|
110 |
+
"follow_up": follow_up_response
|
111 |
+
}
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
|
115 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|