Hasitha16 commited on
Commit
0017ff9
·
verified ·
1 Parent(s): 8f918c0

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +102 -0
model.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
3
+ os.environ["HF_HOME"] = "/tmp/hf-home"
4
+
5
+ import nltk
6
+ nltk.download("punkt", download_dir="/tmp/nltk_data")
7
+
8
+ from sklearn.feature_extraction.text import TfidfVectorizer
9
+ from sklearn.cluster import KMeans
10
+ from sklearn.metrics.pairwise import cosine_similarity
11
+ from nltk.tokenize import sent_tokenize
12
+ from transformers import pipeline
13
+ import numpy as np
14
+
15
+ # Load summarizer and Q&A pipeline
16
+ summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
17
+ qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
18
+
19
+ # --- Summarization Functions ---
20
+ def summarize_review(text):
21
+ """Standard transformer-based summarization"""
22
+ return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
23
+ def smart_summarize(text, n_clusters=1):
24
+ """
25
+ Clustering + cosine similarity-based summarization
26
+ Selects most representative sentence(s) from each cluster
27
+ """
28
+ sentences = sent_tokenize(text)
29
+ if len(sentences) <= 1:
30
+ return text
31
+
32
+ tfidf = TfidfVectorizer(stop_words="english")
33
+ tfidf_matrix = tfidf.fit_transform(sentences)
34
+
35
+ if len(sentences) <= n_clusters:
36
+ return " ".join(sentences)
37
+
38
+ kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
39
+ summary_sentences = []
40
+
41
+ for i in range(n_clusters):
42
+ idx = np.where(kmeans.labels_ == i)[0]
43
+ if not len(idx):
44
+ continue
45
+ avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
46
+ sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
47
+ most_representative = sentences[idx[np.argmax(sim)]]
48
+ summary_sentences.append(most_representative)
49
+
50
+ return " ".join(sorted(summary_sentences, key=sentences.index))
51
+
52
+ # --- Rule-based Category Detectors ---
53
+ def detect_industry(text):
54
+ text = text.lower()
55
+ if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
56
+ return "Healthcare"
57
+ if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
58
+ return "Travel"
59
+ if any(k in text for k in ["bank", "loan", "credit", "payment"]):
60
+ return "Banking"
61
+ if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
62
+ return "Fitness"
63
+ if any(k in text for k in ["movie", "series", "stream", "video"]):
64
+ return "Entertainment"
65
+ if any(k in text for k in ["game", "gaming", "console"]):
66
+ return "Gaming"
67
+ if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
68
+ return "Food Delivery"
69
+ if any(k in text for k in ["school", "university", "teacher", "course"]):
70
+ return "Education"
71
+ if any(k in text for k in ["insurance", "policy", "claim"]):
72
+ return "Insurance"
73
+ if any(k in text for k in ["property", "rent", "apartment", "house"]):
74
+ return "Real Estate"
75
+ if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
76
+ return "E-commerce"
77
+ return "Generic"
78
+
79
+ def detect_product_category(text):
80
+ text = text.lower()
81
+ if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
82
+ return "Mobile Devices"
83
+ if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
84
+ return "Laptops"
85
+ if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
86
+ return "Home Appliances"
87
+ if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
88
+ return "Wearables"
89
+ if any(k in text for k in ["app", "portal", "site", "website"]):
90
+ return "Web App"
91
+ return "General"
92
+
93
+ # --- Follow-up Q&A ---
94
+ def answer_followup(text, question, verbosity="brief"):
95
+ try:
96
+ response = qa_pipeline({"question": question, "context": text})
97
+ answer = response.get("answer", "")
98
+ if verbosity.lower() == "detailed":
99
+ return f"Based on the review, the answer is: **{answer}**"
100
+ return answer
101
+ except Exception:
102
+ return "Sorry, I couldn't generate a follow-up answer."