Hasitha16 commited on
Commit
8f918c0
·
verified ·
1 Parent(s): ed7f39f

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -102
model.py DELETED
@@ -1,102 +0,0 @@
1
- import os
2
- os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
3
- os.environ["HF_HOME"] = "/tmp/hf-home"
4
-
5
- import nltk
6
- nltk.download("punkt", download_dir="/tmp/nltk_data")
7
-
8
- from sklearn.feature_extraction.text import TfidfVectorizer
9
- from sklearn.cluster import KMeans
10
- from sklearn.metrics.pairwise import cosine_similarity
11
- from nltk.tokenize import sent_tokenize
12
- from transformers import pipeline
13
- import numpy as np
14
-
15
- # Load summarizer and Q&A pipeline
16
- summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
17
- qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
18
-
19
- # --- Summarization Functions ---
20
- def summarize_review(text):
21
- """Standard transformer-based summarization"""
22
- return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
23
- def smart_summarize(text, n_clusters=1):
24
- """
25
- Clustering + cosine similarity-based summarization
26
- Selects most representative sentence(s) from each cluster
27
- """
28
- sentences = sent_tokenize(text)
29
- if len(sentences) <= 1:
30
- return text
31
-
32
- tfidf = TfidfVectorizer(stop_words="english")
33
- tfidf_matrix = tfidf.fit_transform(sentences)
34
-
35
- if len(sentences) <= n_clusters:
36
- return " ".join(sentences)
37
-
38
- kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
39
- summary_sentences = []
40
-
41
- for i in range(n_clusters):
42
- idx = np.where(kmeans.labels_ == i)[0]
43
- if not len(idx):
44
- continue
45
- avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
46
- sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
47
- most_representative = sentences[idx[np.argmax(sim)]]
48
- summary_sentences.append(most_representative)
49
-
50
- return " ".join(sorted(summary_sentences, key=sentences.index))
51
-
52
- # --- Rule-based Category Detectors ---
53
- def detect_industry(text):
54
- text = text.lower()
55
- if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
56
- return "Healthcare"
57
- if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
58
- return "Travel"
59
- if any(k in text for k in ["bank", "loan", "credit", "payment"]):
60
- return "Banking"
61
- if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
62
- return "Fitness"
63
- if any(k in text for k in ["movie", "series", "stream", "video"]):
64
- return "Entertainment"
65
- if any(k in text for k in ["game", "gaming", "console"]):
66
- return "Gaming"
67
- if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
68
- return "Food Delivery"
69
- if any(k in text for k in ["school", "university", "teacher", "course"]):
70
- return "Education"
71
- if any(k in text for k in ["insurance", "policy", "claim"]):
72
- return "Insurance"
73
- if any(k in text for k in ["property", "rent", "apartment", "house"]):
74
- return "Real Estate"
75
- if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
76
- return "E-commerce"
77
- return "Generic"
78
-
79
- def detect_product_category(text):
80
- text = text.lower()
81
- if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
82
- return "Mobile Devices"
83
- if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
84
- return "Laptops"
85
- if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
86
- return "Home Appliances"
87
- if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
88
- return "Wearables"
89
- if any(k in text for k in ["app", "portal", "site", "website"]):
90
- return "Web App"
91
- return "General"
92
-
93
- # --- Follow-up Q&A ---
94
- def answer_followup(text, question, verbosity="brief"):
95
- try:
96
- response = qa_pipeline({"question": question, "context": text})
97
- answer = response.get("answer", "")
98
- if verbosity.lower() == "detailed":
99
- return f"Based on the review, the answer is: **{answer}**"
100
- return answer
101
- except Exception:
102
- return "Sorry, I couldn't generate a follow-up answer."