Hasitha16 commited on
Commit
ed7f39f
·
verified ·
1 Parent(s): ce3615c

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -115
main.py DELETED
@@ -1,115 +0,0 @@
1
- from fastapi import FastAPI, Request, Header, HTTPException
2
- from fastapi.responses import HTMLResponse, JSONResponse
3
- from fastapi.openapi.utils import get_openapi
4
- from fastapi.openapi.docs import get_swagger_ui_html
5
- from fastapi.middleware.cors import CORSMiddleware
6
- from pydantic import BaseModel
7
- from transformers import pipeline
8
- import os, logging, traceback
9
- from model import summarize_review, smart_summarize, detect_industry, detect_product_category, answer_followup
10
- from typing import Optional, List
11
-
12
- app = FastAPI(
13
- title="\U0001f9e0 NeuroPulse AI",
14
- description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
15
- version="2025.1.0",
16
- openapi_url="/openapi.json",
17
- docs_url=None,
18
- redoc_url="/redoc"
19
- )
20
-
21
- app.add_middleware(
22
- CORSMiddleware,
23
- allow_origins=["*"],
24
- allow_credentials=True,
25
- allow_methods=["*"],
26
- allow_headers=["*"],
27
- )
28
-
29
- @app.exception_handler(Exception)
30
- async def exception_handler(request: Request, exc: Exception):
31
- logging.error(f"Unhandled Exception: {traceback.format_exc()}")
32
- return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
33
-
34
- @app.get("/docs", include_in_schema=False)
35
- def custom_swagger_ui():
36
- return get_swagger_ui_html(
37
- openapi_url=app.openapi_url,
38
- title="\U0001f9e0 Swagger UI - NeuroPulse AI",
39
- swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
40
- swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
41
- swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
42
- )
43
-
44
- @app.get("/", response_class=HTMLResponse)
45
- def root():
46
- return "<h1>NeuroPulse AI Backend is Running</h1>"
47
-
48
- class ReviewInput(BaseModel):
49
- text: str
50
- model: str = "distilbert-base-uncased-finetuned-sst-2-english"
51
- industry: Optional[str] = None
52
- aspects: bool = False
53
- follow_up: Optional[str] = None
54
- product_category: Optional[str] = None
55
- device: Optional[str] = None
56
- intelligence: Optional[bool] = False
57
- verbosity: Optional[str] = "detailed"
58
- explain: Optional[bool] = False
59
-
60
- class BulkReviewInput(BaseModel):
61
- reviews: List[str]
62
- model: str = "distilbert-base-uncased-finetuned-sst-2-english"
63
- industry: Optional[List[str]] = None
64
- aspects: bool = False
65
- product_category: Optional[List[str]] = None
66
- device: Optional[List[str]] = None
67
-
68
- VALID_API_KEY = "my-secret-key"
69
- logging.basicConfig(level=logging.INFO)
70
- sentiment_pipeline = pipeline("sentiment-analysis")
71
-
72
- def auto_fill(value: Optional[str], fallback: str) -> str:
73
- if not value or value.lower() == "auto-detect":
74
- return fallback
75
- return value
76
-
77
- @app.post("/analyze/")
78
- async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
79
- if x_api_key != VALID_API_KEY:
80
- raise HTTPException(status_code=401, detail="❌ Unauthorized: Invalid API key")
81
- if len(data.text.split()) < 20:
82
- raise HTTPException(status_code=400, detail="⚠️ Review too short for analysis (min. 20 words).")
83
-
84
- try:
85
- # Smart summary logic based on verbosity and intelligence
86
- if data.verbosity.lower() == "brief":
87
- summary = summarize_review(data.text, max_len=40, min_len=8)
88
- else:
89
- summary = smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
90
-
91
- sentiment = sentiment_pipeline(data.text)[0]
92
- emotion = "joy"
93
-
94
- # Auto-detection logic
95
- industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
96
- product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
97
- device = "Web"
98
-
99
- follow_up_response = None
100
- if data.follow_up:
101
- follow_up_response = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
102
-
103
- return {
104
- "summary": summary,
105
- "sentiment": sentiment,
106
- "emotion": emotion,
107
- "product_category": product_category,
108
- "device": device,
109
- "industry": industry,
110
- "follow_up": follow_up_response
111
- }
112
-
113
- except Exception as e:
114
- logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
115
- raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")