Spaces:
Running
Running
File size: 8,164 Bytes
fc94552 8e27b3a fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 8e27b3a fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 33c45f1 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 68804d2 9aa56c6 fc94552 9aa56c6 fc94552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("βοΈ PM Config")
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("π API Token", value="my-secret-key", type="password")
if not api_token or api_token.strip() == "my-secret-key":
st.warning("π§ͺ Demo Mode β Not all features active.")
backend_url = st.text_input("π Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("π Sentiment Model", [
"Auto-detect",
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
use_aspects = st.checkbox("π Detect Pain Points")
use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)")
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
# === SINGLE REVIEW ===
with tab1:
st.title("π ChurnSight AI β Product Feedback Assistant")
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("π Analyze")
with col2:
if st.button("π² Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("π§Ή Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing feedback..."):
try:
model = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"π« Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("π PM Insight Summary")
st.info(data["summary"])
st.caption("π Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"π’ Emotion: {data['emotion']}")
if "churn_risk" in data:
risk = data["churn_risk"]
color = "π΄" if risk == "High Risk" else "π’"
st.metric("π¨ Churn Risk", f"{color} {risk}")
if "pain_points" in data and data["pain_points"]:
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
st.subheader("π Audio Summary")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("β¬οΈ Download Audio", audio.read(), "summary.mp3")
st.markdown("### π Ask a Follow-Up")
# π‘ Smarter Follow-Up Suggestion Logic
sentiment = data["sentiment"]["label"].lower()
churn = data.get("churn_risk", "")
pain = data.get("pain_points", [])
if sentiment == "positive" and churn == "Low Risk":
sample_questions = [
"What features impressed the user?",
"Would they recommend the product?",
"What delighted the customer most?"
]
elif sentiment == "negative" or churn == "High Risk" or pain:
sample_questions = [
"What made the user upset?",
"Any feature complaints?",
"Is this user likely to churn?"
]
else:
sample_questions = [
"What are the key takeaways?",
"How can this review guide product changes?",
"Is there any concern raised?"
]
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("π Follow-up Question")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"β Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"β οΈ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("β
Answer")
st.success(st.session_state.followup_answer)
|