File size: 5,896 Bytes
555c12b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
os.environ["HF_HOME"] = "/tmp/hf-home"

import nltk
nltk.download("punkt", download_dir="/tmp/nltk_data")

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import sent_tokenize
from transformers import pipeline
import numpy as np
import logging

# === Pipelines ===
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)

# === Brief Summarization ===
def summarize_review(text, max_len=80, min_len=20):
    try:
        return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
    except Exception as e:
        logging.warning(f"Summarization fallback used: {e}")
        return text

# === Smart Summarization with Clustering ===
def smart_summarize(text, n_clusters=1):
    try:
        sentences = sent_tokenize(text)
        if len(sentences) <= 1:
            return text
        tfidf = TfidfVectorizer(stop_words="english")
        tfidf_matrix = tfidf.fit_transform(sentences)
        if len(sentences) <= n_clusters:
            return " ".join(sentences)
        kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
        summary_sentences = []
        for i in range(n_clusters):
            idx = np.where(kmeans.labels_ == i)[0]
            if not len(idx):
                continue
            avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
            sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
            most_representative = sentences[idx[np.argmax(sim)]]
            summary_sentences.append(most_representative)
        return " ".join(sorted(summary_sentences, key=sentences.index))
    except Exception as e:
        logging.error(f"Smart summarize error: {e}")
        return text

# === Emotion Detection ===
def detect_emotion(text):
    try:
        result = emotion_pipeline(text)[0]
        return result["label"]
    except Exception as e:
        logging.warning(f"Emotion detection failed: {e}")
        return "neutral"

# === Follow-up Q&A (Flexible for list or str) ===
def answer_followup(text, question, verbosity="brief"):
    try:
        if isinstance(question, list):
            answers = []
            for q in question:
                response = qa_pipeline({"question": q, "context": text})
                ans = response.get("answer", "")
                if verbosity.lower() == "detailed":
                    answers.append(f"**{q}** → {ans}")
                else:
                    answers.append(ans)
            return answers
        else:
            response = qa_pipeline({"question": question, "context": text})
            ans = response.get("answer", "")
            return f"**{question}** → {ans}" if verbosity.lower() == "detailed" else ans
    except Exception as e:
        logging.warning(f"Follow-up error: {e}")
        return "Sorry, I couldn't generate a follow-up answer."

# === Fast follow-up (used for direct /followup route) ===
def answer_only(text, question):
    try:
        if not question:
            return "No question provided."
        return qa_pipeline({"question": question, "context": text}).get("answer", "No answer found.")
    except Exception as e:
        logging.warning(f"Answer-only failed: {e}")
        return "Q&A failed."

# === Optional Explanation Generator ===
def generate_explanation(text):
    try:
        explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
        return f"🧠 This review can be explained as: {explanation}"
    except Exception as e:
        logging.warning(f"Explanation failed: {e}")
        return "⚠️ Explanation could not be generated."

# === Industry Detector ===
def detect_industry(text):
    text = text.lower()
    if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
        return "Healthcare"
    if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
        return "Travel"
    if any(k in text for k in ["bank", "loan", "credit", "payment"]):
        return "Banking"
    if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
        return "Fitness"
    if any(k in text for k in ["movie", "series", "stream", "video"]):
        return "Entertainment"
    if any(k in text for k in ["game", "gaming", "console"]):
        return "Gaming"
    if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
        return "Food Delivery"
    if any(k in text for k in ["school", "university", "teacher", "course"]):
        return "Education"
    if any(k in text for k in ["insurance", "policy", "claim"]):
        return "Insurance"
    if any(k in text for k in ["property", "rent", "apartment", "house"]):
        return "Real Estate"
    if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
        return "E-commerce"
    return "Generic"

# === Product Category Detector ===
def detect_product_category(text):
    text = text.lower()
    if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
        return "Mobile Devices"
    if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
        return "Laptops"
    if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
        return "Home Appliances"
    if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
        return "Wearables"
    if any(k in text for k in ["app", "portal", "site", "website"]):
        return "Web App"
    return "General"