churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
13606c8 verified
raw
history blame
8.63 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
st.set_page_config(page_title="NeuroPulse AI", page_icon="🧠", layout="wide")
logo_path = os.path.join("app", "static", "logo.png")
if os.path.exists(logo_path):
st.image(logo_path, width=160)
# Session state defaults
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
# Shared Sidebar Controls
with st.sidebar:
st.header("βš™οΈ Global Settings")
st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
api_token = st.text_input("πŸ” API Token", type="password")
backend_url = st.text_input("πŸ–₯️ Backend URL", value="http://0.0.0.0:8000")
sentiment_model = st.selectbox("πŸ“Š Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("🏭 Industry Context", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("🧩 Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps"
])
device_type = st.selectbox("πŸ’» Device Type", [
"Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk"
])
use_aspects = st.checkbox("πŸ”¬ Enable Aspect Analysis")
use_smart_summary = st.checkbox("🧠 Use Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("🧠 Smart Summary for Bulk")
follow_up = st.text_input("πŸ” Follow-up Question")
voice_lang = st.selectbox("πŸ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech Helper
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
# Tabs for modes
tab1, tab2 = st.tabs(["🧠 Single Review", "πŸ“š Bulk CSV"])
# --- SINGLE REVIEW MODE ---
with tab1:
st.title("🧠 NeuroPulse AI – Multimodal Review Analyzer")
st.markdown("""
<div style='font-size:16px;color:#555;'>Minimum 50–100 words recommended for optimal insights.</div>
""", unsafe_allow_html=True)
review = st.text_area("πŸ“ Enter a Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("πŸ” Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("🎲 Example", use_container_width=True):
st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout."
st.rerun()
with col3:
if st.button("🧹 Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.error("⚠️ Please enter at least 50 words for meaningful analysis.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"device": device_type
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("βœ… Analysis Complete")
st.subheader("πŸ“Œ Summary")
st.info(data["summary"])
st.caption(f"🧠 Summary Type: {'Smart Summary' if use_smart_summary else 'Standard Model'}")
st.markdown(f"**Context:** {industry} | {product_category} | {device_type}")
st.subheader("πŸ”Š Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("⬇️ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"πŸ’’ Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("πŸ” Aspects")
for a in data["aspects"]:
st.write(f"πŸ”Ή {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("🧠 Follow-Up Response")
st.warning(data["follow_up"])
else:
st.error(f"❌ API Error: {res.status_code}")
except Exception as e:
st.error(f"🚫 {e}")
# --- BULK REVIEW MODE ---
with tab2:
st.title("πŸ“š Bulk CSV Upload")
st.markdown("""
<div style='font-size:16px;'>Upload a CSV with the following columns:<br>
<code>review</code> <span style='color:#aaa;'>(required)</span>,
<code>industry</code>, <code>product_category</code>, <code>device</code> <span style='color:#aaa;'>(optional)</span></div>
""", unsafe_allow_html=True)
with st.expander("πŸ“„ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("⬇️ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("πŸ“ Upload your CSV", type="csv")
if uploaded_file and api_token:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"βœ… Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df)
df[col] = df[col].fillna("").astype(str)
if st.button("πŸ“Š Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing CSV..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist()
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary_bulk else {}
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
results["summary_type"] = "Smart" if use_smart_summary_bulk else "Standard"
st.dataframe(results)
st.download_button("⬇️ Download Results CSV", results.to_csv(index=False), "bulk_results.csv", mime="text/csv")
else:
st.error(f"❌ Bulk Analysis Failed: {res.status_code}")
except Exception as e:
st.error(f"πŸ’₯ Error: {e}")
except Exception as e:
st.error(f"❌ File Error: {e}")