churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
b9b3bd4 verified
raw
history blame
10 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide")
# Load logo
logo_path = "logo.png"
if os.path.exists(logo_path):
st.image(logo_path, width=160)
# Session State
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
st.session_state.intelligence_mode = True
# Apply Dark Mode Styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #1e1e1e;
color: #f5f5f5;
}
.stTextInput > div > div > input, .stTextArea > div > textarea {
background-color: #2b2b2b;
color: white;
}
.stButton > button {
background-color: #333;
color: white;
}
.stDownloadButton > button {
background-color: #444;
color: white;
}
.stSelectbox, .stCheckbox, .stRadio, .stFileUploader {
background-color: #2b2b2b;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar controls
with st.sidebar:
st.header("โš™๏ธ Global Settings")
st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("๐Ÿ” API Token", type="password")
backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐Ÿญ Industry", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("๐Ÿงฉ Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps"
])
device_type = st.selectbox("๐Ÿ’ป Device", [
"Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk"
])
use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis")
use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk")
verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"])
follow_up = st.text_input("๐Ÿ” Follow-up Question")
voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech Helper
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
# Tabs
tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"])
# --- SINGLE ---
with tab1:
st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer")
st.markdown("<div style='font-size:16px;color:#aaa;'>Minimum 50โ€“100 words recommended.</div>", unsafe_allow_html=True)
review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("๐ŸŽฒ Example", use_container_width=True):
st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout."
st.rerun()
with col3:
if st.button("๐Ÿงน Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.warning("โš ๏ธ Please enter at least 50 words.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"device": device_type,
"verbosity": verbosity,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("โœ… Analysis Complete")
st.subheader("๐Ÿ“Œ Summary")
st.info(data["summary"])
st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'}")
st.markdown(f"**Context:** {industry} | {product_category} | {device_type}")
st.subheader("๐Ÿ”Š Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐Ÿ’ข Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("๐Ÿ” Aspects")
for a in data["aspects"]:
st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("๐Ÿง  Follow-Up Response")
st.warning(data["follow_up"])
if data.get("explanation"):
st.subheader("๐Ÿงฎ Explain This")
st.markdown(data["explanation"])
else:
st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐Ÿšซ Exception occurred: {e}")
# --- BULK ---
with tab2:
st.title("๐Ÿ“š Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:<br>
<code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
""", unsafe_allow_html=True)
with st.expander("๐Ÿ“„ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv")
if uploaded_file and api_token:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โœ… Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df)
df[col] = df[col].fillna("").astype(str)
if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
params = {"smart": "1"} if use_smart_summary_bulk else {}
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐Ÿšจ Processing Error: {e}")
except Exception as e:
st.error(f"โŒ File Read Error: {e}")