churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
295b8c7 verified
raw
history blame
10.7 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide")
# Load logo
logo_path = "logo.png"
if os.path.exists(logo_path):
st.image(logo_path, width=180)
# Session State defaults
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
st.session_state.intelligence_mode = True
# Apply Dark Mode Styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar controls
with st.sidebar:
st.header("โš™๏ธ Global Settings")
st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode)
DEFAULT_DEMO_TOKEN = "my-secret-key" # ๐Ÿ’ก replace with secure demo token
api_token = st.text_input("๐Ÿ” API Token", value=DEFAULT_DEMO_TOKEN, type="password")
# ๐ŸŸก Insert this warning right after the token field
if not api_token or api_token.strip() == "my-secret-key":
st.warning("๐Ÿงช Running in demo mode โ€” for full access, enter a valid API key.")
backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐Ÿญ Industry", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance",
"Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("๐Ÿงฉ Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App",
"Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables",
"Home Appliances", "Food Apps"
])
use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis")
use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk")
verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"])
follow_up = st.text_input("๐Ÿ” Follow-up Question")
voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"])
# --- SINGLE REVIEW ---
with tab1:
st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer")
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20โ€“50 words recommended.</div>", unsafe_allow_html=True)
review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("๐ŸŽฒ Example", use_container_width=True):
st.session_state.review = "I love this phone! Super fast performance, great battery, and smooth UI."
st.rerun()
with col3:
if st.button("๐Ÿงน Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.warning("โš ๏ธ Please enter at least 50 words.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"verbosity": verbosity,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": st.session_state.get("api_token", api_token)}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("โœ… Analysis Complete")
st.subheader("๐Ÿ“Œ Summary")
st.info(data["summary"])
st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response")
st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")
st.subheader("๐Ÿ”Š Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐Ÿ’ข Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("๐Ÿ” Aspects")
for a in data["aspects"]:
st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("๐Ÿ” Follow-Up Answer")
st.warning(data["follow_up"])
if data.get("explanation"):
st.subheader("๐Ÿงฎ Explain This")
st.markdown(data["explanation"])
else:
st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐Ÿšซ Exception occurred: {e}")
# --- BULK CSV ---
with tab2:
st.title("๐Ÿ“š Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:<br>
<code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
""", unsafe_allow_html=True)
with st.expander("๐Ÿ“„ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv")
if uploaded_file:
if not api_token:
st.error("๐Ÿ” Please enter your API token in the sidebar.")
else:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โœ… Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = ["Auto-detect"] * len(df)
df[col] = df[col].fillna("Auto-detect").astype(str)
# Replace "Auto-detect" with fallback
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"intelligence": st.session_state.intelligence_mode,
}
# โœ… Updated: Pass token as query param (NOT in headers)
res = requests.post(
f"{backend_url}/bulk/?token={api_token}",
json=payload
)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐Ÿšจ Processing Error: {e}")
except Exception as e:
st.error(f"โŒ File Read Error: {e}")