Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True | |
) | |
from typing import Any, List | |
import gradio as gr | |
import requests | |
import spaces | |
import torch | |
from PIL import Image, ImageDraw | |
from transformers import AutoModelForImageTextToText, AutoProcessor | |
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize | |
from . import navigation | |
# --- Configuration --- | |
MODEL_ID = "Hcompany/Holo1-7B" | |
# --- Model and Processor Loading (Load once) --- | |
print(f"Loading model and processor for {MODEL_ID}...") | |
model = None | |
processor = None | |
model_loaded = False | |
load_error_message = "" | |
try: | |
model = AutoModelForImageTextToText.from_pretrained( | |
MODEL_ID, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True | |
).to("cuda") | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_loaded = True | |
print("Model and processor loaded successfully.") | |
except Exception as e: | |
load_error_message = ( | |
f"Error loading model/processor: {e}\n" | |
"This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n" | |
"Ensure you have a stable internet connection and the necessary libraries installed." | |
) | |
print(load_error_message) | |
# --- Helper functions from the model card (or adapted) --- | |
def run_inference_localization( | |
messages_for_template: List[dict[str, Any]], pil_image_for_processing: Image.Image | |
) -> str: | |
model.to("cuda") | |
torch.cuda.set_device(0) | |
""" | |
Runs inference using the Holo1 model. | |
- messages_for_template: The prompt structure, potentially including the PIL image object | |
(which apply_chat_template converts to an image tag). | |
- pil_image_for_processing: The actual PIL image to be processed into tensors. | |
""" | |
# 1. Apply chat template to messages. This will create the text part of the prompt, | |
# including image tags if the image was part of `messages_for_template`. | |
text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True) | |
# 2. Process text and image together to get model inputs | |
inputs = processor( | |
text=[text_prompt], | |
images=[pil_image_for_processing], # Provide the actual image data here | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
# 3. Generate response | |
# Using do_sample=False for more deterministic output, as in the model card's structured output example | |
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False) | |
# 4. Trim input_ids from generated_ids to get only the generated part | |
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
# 5. Decode the generated tokens | |
decoded_output = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return decoded_output[0] if decoded_output else "" | |
# --- Gradio processing function --- | |
def navigate(input_pil_image: Image.Image, task: str) -> str: | |
if not model_loaded or not processor or not model: | |
return f"Model not loaded. Error: {load_error_message}", None | |
if not input_pil_image: | |
return "No image provided. Please upload an image.", None | |
if not task or task.strip() == "": | |
return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB") | |
# 1. Prepare image: Resize according to model's image processor's expected properties | |
# This ensures predicted coordinates match the (resized) image dimensions. | |
image_proc_config = processor.image_processor | |
try: | |
resized_height, resized_width = smart_resize( | |
input_pil_image.height, | |
input_pil_image.width, | |
factor=image_proc_config.patch_size * image_proc_config.merge_size, | |
min_pixels=image_proc_config.min_pixels, | |
max_pixels=image_proc_config.max_pixels, | |
) | |
# Using LANCZOS for resampling as it's generally good for downscaling. | |
# The model card used `resample=None`, which might imply nearest or default. | |
# For visual quality in the demo, LANCZOS is reasonable. | |
resized_image = input_pil_image.resize( | |
size=(resized_width, resized_height), | |
resample=Image.Resampling.LANCZOS, # type: ignore | |
) | |
except Exception as e: | |
print(f"Error resizing image: {e}") | |
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB") | |
# 2. Create the prompt using the resized image (for correct image tagging context) and task | |
prompt = navigation.get_navigation_prompt(task, resized_image, step=1) | |
# 3. Run inference | |
# Pass `messages` (which includes the image object for template processing) | |
# and `resized_image` (for actual tensor conversion). | |
try: | |
navigation_str = run_inference_localization(prompt, resized_image) | |
except Exception as e: | |
print(f"Error during model inference: {e}") | |
return f"Error during model inference: {e}", resized_image.copy().convert("RGB") | |
return navigation_str | |
# return navigation.NavigationStep(**json.loads(navigation_str)) | |
# --- Load Example Data --- | |
example_image = None | |
example_task = "Book a hotel in Paris on August 3rd for 3 nights" | |
try: | |
example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg" | |
example_image = Image.open(requests.get(example_image_url, stream=True).raw) | |
except Exception as e: | |
print(f"Could not load example image from URL: {e}") | |
# Create a placeholder image if loading fails, so Gradio example still works | |
try: | |
example_image = Image.new("RGB", (200, 150), color="lightgray") | |
draw = ImageDraw.Draw(example_image) | |
draw.text((10, 10), "Example image\nfailed to load", fill="black") | |
except: # If PIL itself is an issue (unlikely here but good for robustness) | |
pass | |
# --- Gradio Interface Definition --- | |
title = "Holo1-7B: Action VLM Navigation Demo" | |
description = """ | |
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct. | |
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability. | |
**How to use:** | |
1. Upload an image (e.g., a screenshot of a UI, like the calendar example). | |
2. Provide a textual task (e.g., "Book a hotel in Paris on August 3rd for 3 nights"). | |
3. The model will predict the navigation step. | |
The model processes a resized version of your input image. Coordinates are relative to this resized image. | |
""" | |
article = f""" | |
<p style='text-align: center'> | |
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany | | |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> | | |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a> | |
</p> | |
""" | |
if not model_loaded: | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>") | |
gr.Markdown(f"<center>{load_error_message}</center>") | |
gr.Markdown( | |
"<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>" | |
) | |
else: | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>") | |
# gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400) | |
task_component = gr.Textbox( | |
label="task", | |
placeholder="e.g., Click the 'Login' button", | |
info="Type the action you want the model to localize on the image.", | |
) | |
submit_button = gr.Button("Localize Click", variant="primary") | |
with gr.Column(scale=1): | |
output_coords_component = gr.Textbox( | |
label="Predicted Coordinates (Format: Click(x,y))", interactive=False | |
) | |
output_image_component = gr.Image( | |
type="pil", label="Image with Predicted Click Point", height=400, interactive=False | |
) | |
if example_image: | |
gr.Examples( | |
examples=[[example_image, example_task]], | |
inputs=[input_image_component, task_component], | |
outputs=[output_coords_component, output_image_component], | |
fn=navigate, | |
cache_examples="lazy", | |
) | |
gr.Markdown(article) | |
submit_button.click( | |
fn=navigate, | |
inputs=[input_image_component, task_component], | |
outputs=[output_coords_component, output_image_component], | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |