plcedoz38's picture
first
87d57d6
raw
history blame
9.34 kB
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True
)
from typing import Any, List
import gradio as gr
import requests
import spaces
import torch
from PIL import Image, ImageDraw
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from . import navigation
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-7B"
# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID}...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True
).to("cuda")
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n"
"Ensure you have a stable internet connection and the necessary libraries installed."
)
print(load_error_message)
# --- Helper functions from the model card (or adapted) ---
@spaces.GPU(duration=120)
def run_inference_localization(
messages_for_template: List[dict[str, Any]], pil_image_for_processing: Image.Image
) -> str:
model.to("cuda")
torch.cuda.set_device(0)
"""
Runs inference using the Holo1 model.
- messages_for_template: The prompt structure, potentially including the PIL image object
(which apply_chat_template converts to an image tag).
- pil_image_for_processing: The actual PIL image to be processed into tensors.
"""
# 1. Apply chat template to messages. This will create the text part of the prompt,
# including image tags if the image was part of `messages_for_template`.
text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True)
# 2. Process text and image together to get model inputs
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing], # Provide the actual image data here
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# 3. Generate response
# Using do_sample=False for more deterministic output, as in the model card's structured output example
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
# 4. Trim input_ids from generated_ids to get only the generated part
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
# 5. Decode the generated tokens
decoded_output = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
# --- Gradio processing function ---
def navigate(input_pil_image: Image.Image, task: str) -> str:
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None
if not input_pil_image:
return "No image provided. Please upload an image.", None
if not task or task.strip() == "":
return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB")
# 1. Prepare image: Resize according to model's image processor's expected properties
# This ensures predicted coordinates match the (resized) image dimensions.
image_proc_config = processor.image_processor
try:
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=image_proc_config.patch_size * image_proc_config.merge_size,
min_pixels=image_proc_config.min_pixels,
max_pixels=image_proc_config.max_pixels,
)
# Using LANCZOS for resampling as it's generally good for downscaling.
# The model card used `resample=None`, which might imply nearest or default.
# For visual quality in the demo, LANCZOS is reasonable.
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS, # type: ignore
)
except Exception as e:
print(f"Error resizing image: {e}")
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2. Create the prompt using the resized image (for correct image tagging context) and task
prompt = navigation.get_navigation_prompt(task, resized_image, step=1)
# 3. Run inference
# Pass `messages` (which includes the image object for template processing)
# and `resized_image` (for actual tensor conversion).
try:
navigation_str = run_inference_localization(prompt, resized_image)
except Exception as e:
print(f"Error during model inference: {e}")
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
return navigation_str
# return navigation.NavigationStep(**json.loads(navigation_str))
# --- Load Example Data ---
example_image = None
example_task = "Book a hotel in Paris on August 3rd for 3 nights"
try:
example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
# Create a placeholder image if loading fails, so Gradio example still works
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except: # If PIL itself is an issue (unlikely here but good for robustness)
pass
# --- Gradio Interface Definition ---
title = "Holo1-7B: Action VLM Navigation Demo"
description = """
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
**How to use:**
1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
2. Provide a textual task (e.g., "Book a hotel in Paris on August 3rd for 3 nights").
3. The model will predict the navigation step.
The model processes a resized version of your input image. Coordinates are relative to this resized image.
"""
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown(
"<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>"
)
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
# gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
task_component = gr.Textbox(
label="task",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image.",
)
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(
label="Predicted Coordinates (Format: Click(x,y))", interactive=False
)
output_image_component = gr.Image(
type="pil", label="Image with Predicted Click Point", height=400, interactive=False
)
if example_image:
gr.Examples(
examples=[[example_image, example_task]],
inputs=[input_image_component, task_component],
outputs=[output_coords_component, output_image_component],
fn=navigate,
cache_examples="lazy",
)
gr.Markdown(article)
submit_button.click(
fn=navigate,
inputs=[input_image_component, task_component],
outputs=[output_coords_component, output_image_component],
)
if __name__ == "__main__":
demo.launch(debug=True)