File size: 9,313 Bytes
1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 c0cc0df f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 c0cc0df f0d7075 1bc26f8 c0cc0df d336934 c0cc0df 1bc26f8 c0cc0df f0d7075 1bc26f8 c0cc0df 1bc26f8 f0d7075 d336934 f0d7075 1bc26f8 f0d7075 d336934 f0d7075 1bc26f8 f0d7075 d336934 f0d7075 f07be6b f0d7075 d336934 f0d7075 d336934 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 f0d7075 1bc26f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from compel import Compel, ReturnedEmbeddingsType
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Make sure to use torch.float16 consistently throughout the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/pornmasterPro_noobV3VAE",
torch_dtype=torch.float16,
variant="fp16", # Explicitly use fp16 variant
use_safetensors=True # Use safetensors if available
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force all components to use the same dtype
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)
# 追加: Initialize Compel for long prompt processing
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
# Default prompt
DEFAULT_PROMPT = "Detailed illustration, realistic style, portrait of a beautiful Japanese woman, wearing an elegant traditional Japanese uniform, neatly tailored with intricate patterns and subtle textures, serene expression, soft natural lighting, standing gracefully in a traditional Japanese garden with cherry blossom petals gently falling in the background, cinematic quality, ultra-detailed, high-resolution, warm tones"
# 追加: Simple long prompt processing function
def process_long_prompt(prompt, negative_prompt=""):
"""Simple long prompt processing using Compel"""
try:
conditioning, pooled = compel([prompt, negative_prompt])
return conditioning, pooled
except Exception as e:
print(f"Long prompt processing failed: {e}, falling back to standard processing")
return None, None
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# 変更: Remove the 60-word limit warning and add long prompt check
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
# 追加: Try long prompt processing first if prompt is long
if use_long_prompt:
print("Using long prompt processing...")
conditioning, pooled = process_long_prompt(prompt, negative_prompt)
if conditioning is not None:
output_image = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
# Fall back to standard processing
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
except RuntimeError as e:
print(f"Error during generation: {e}")
# Return a blank image with error message
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
return error_img
css = """
/* Main container styling */
#col-container {
margin: 0 auto;
max-width: 520px;
}
/* Gradient background for the entire app */
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #ffc947 100%);
min-height: 100vh;
}
/* Main block styling with semi-transparent background */
.contain {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 20px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
backdrop-filter: blur(4px);
border: 1px solid rgba(255, 255, 255, 0.18);
}
/* Input field styling */
.gr-text-input {
background: rgba(255, 255, 255, 0.9) !important;
border: 2px solid rgba(102, 126, 234, 0.3) !important;
border-radius: 10px !important;
}
/* Button styling */
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
/* Accordion styling */
.gr-accordion {
background: rgba(255, 255, 255, 0.8) !important;
border-radius: 10px !important;
margin-top: 10px !important;
}
/* Result image container */
.gr-image {
border-radius: 15px !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1) !important;
}
/* Slider styling */
.gr-slider {
background: rgba(255, 255, 255, 0.8) !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 🎨 Stable Diffusion XL Image Generator
### Create beautiful images with AI
"""
)
# Badge section
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; gap: 20px; margin: 20px 0;">
<a href="https://huggingface.co/spaces/Heartsync/Wan-2.2-ADULT" target="_blank">
<img src="https://img.shields.io/static/v1?label=T2I%20%26%20TI2V&message=Wan-2.2-ADULT&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/PornHUB" target="_blank">
<img src="https://img.shields.io/static/v1?label=T2I%20&message=PornHUB&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/Hentai-Adult" target="_blank">
<img src="https://img.shields.io/static/v1?label=T2I%20&message=Hentai-Adult&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
</div>
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (long prompts are automatically supported)",
container=False,
value=DEFAULT_PROMPT # Set default prompt
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch() |