Spaces:
Sleeping
Sleeping
## Import the required Modules/Packages | |
import pandas as pd | |
import torch | |
from torch.nn import functional as F | |
import torchvision | |
from torchvision import transforms | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from collections import OrderedDict | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
from model import custResNet | |
classes = {0: 'airplane', | |
1: 'automobile', | |
2: 'bird', | |
3: 'cat', | |
4: 'deer', | |
5: 'dog', | |
6: 'frog', | |
7: 'horse', | |
8: 'ship', | |
9: 'truck'} | |
mis_classified_df = pd.read_csv('misclassified_images.csv') | |
mis_classified_df['ground_truths'] = mis_classified_df['ground_truths'].map(classes) | |
mis_classified_df['predicted_vals'] = mis_classified_df['predicted_vals'].map(classes) | |
mis_classified_df = mis_classified_df.sample(frac=1) | |
device = torch.device("cuda") | |
model1 = custResNet() | |
model1.load_state_dict(torch.load('cust_resnet_model.pth', map_location=torch.device('cpu')), strict=False) | |
model1.eval() | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.49139968, 0.48215827, 0.44653124], std=[0.24703233, 0.24348505, 0.26158768]) | |
]) | |
inv_transform = transforms.Normalize(mean=[-(0.49139968/0.24703233), -(0.48215827/0.24348505), -(0.44653124/0.26158768)], std=[(0.24703233), (1/0.24348505), (1/0.26158768)]) | |
def get_target_layer(target_layer): | |
if (target_layer==4): | |
result = [model1.block3] | |
elif (target_layer==3): | |
result = [model1.block2] | |
elif (target_layer==2): | |
result = [model1.block1] | |
elif (target_layer==1): | |
result = [model1.prep_block] | |
else: | |
result = [model1.block3] | |
return result | |
grad_cam_call_list = [GradCAM(model=model1, target_layers=get_target_layer(i), use_cuda=(device == 'cuda')) for i in range(4)] | |
def classify_image(input_image, top_classes=3, grad_cam=True, target_layers=[2, 3], transparency=0.7): | |
input_ = transform(input_image).unsqueeze(0) | |
output = model1(input_) | |
output = F.softmax(output.flatten(), dim=-1) | |
confidences = [(classes[i], float(output[i])) for i in range(10)] | |
confidences.sort(key=lambda x: x[1], reverse=True) | |
confidences = OrderedDict(confidences[:top_classes]) | |
label = torch.argmax(output).item() | |
results = [] | |
if grad_cam: | |
for layer in target_layers: | |
grad_cam = grad_cam_call_list[layer] | |
targets = [ClassifierOutputTarget(label)] | |
grayscale_cam = grad_cam(input_tensor=input_, targets=targets) | |
grayscale_cam = grayscale_cam[0, :] | |
output_image = show_cam_on_image(input_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency) | |
results.append((output_image, f"Layer {layer - 4}")) | |
else: | |
results.append((input_image, "Input")) | |
return results, confidences | |
demo1 = gr.Interface( | |
fn=classify_image, | |
inputs=[ | |
gr.Image(shape=(32, 32), label="Input Image", value='test_images/cat.jpg'), | |
gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes"), | |
gr.Checkbox(label="Show GradCAM?", value=True), | |
#gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"), | |
gr.CheckboxGroup(["-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Which Network Layer(s)?", type='index'), | |
gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1) | |
], | |
outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), | |
gr.Label(label='Top Classes')], | |
examples=[[f'test_images/{k}.jpg'] for k in classes.values()] | |
) | |
def show_mis_classifications(num_examples=20, grad_cam=True, target_layer=-2, transparency=0.5): | |
result = list() | |
for index, row in mis_classified_df.iterrows(): | |
image = np.asarray(Image.open(f'misclassified_examples/{index}.jpg')) | |
output_image, confidence = classify_image(image, top_classes=1, grad_cam=grad_cam, target_layers=[4+target_layer], | |
transparency=transparency) | |
truth = row['ground_truths'] | |
predicted = list(confidence)[0] | |
if truth != predicted: | |
result.append((output_image[0][0], f"{row['ground_truths']} / {predicted}")) | |
if len(result) >= num_examples: | |
break | |
return result | |
demo2 = gr.Interface( | |
fn=show_mis_classifications, | |
inputs=[ | |
gr.Number(value=20, minimum=1, maximum=len(mis_classified_df), label="No. of missclassified Examples", precision=0), | |
gr.Checkbox(label="Show GradCAM?", value=True), | |
gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"), | |
gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1), | |
], | |
outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=4)] | |
) | |
demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"]) | |
demo.launch(debug=True) | |