HemaAM commited on
Commit
f9f2b4c
·
1 Parent(s): cfa509a

Update app.py

Browse files

The folder names for new test images and the mis classified images are corrected here

Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -92,7 +92,7 @@ def classify_image(input_image, top_classes=3, grad_cam=True, target_layers=[2,
92
  demo1 = gr.Interface(
93
  fn=classify_image,
94
  inputs=[
95
- gr.Image(shape=(32, 32), label="Input Image", value='examples/cat.jpg'),
96
  gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes"),
97
  gr.Checkbox(label="Show GradCAM?", value=True),
98
  #gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"),
@@ -101,13 +101,13 @@ demo1 = gr.Interface(
101
  ],
102
  outputs=[gr.Gallery(label="Output Images", columns=2, rows=2),
103
  gr.Label(label='Top Classes')],
104
- examples=[[f'examples/{k}.jpg'] for k in classes.values()]
105
  )
106
 
107
  def show_mis_classifications(num_examples=20, grad_cam=True, target_layer=-2, transparency=0.5):
108
  result = list()
109
  for index, row in mis_classified_df.iterrows():
110
- image = np.asarray(Image.open(f'missed_examples2/{index}.jpg'))
111
  output_image, confidence = classify_image(image, top_classes=1, grad_cam=grad_cam, target_layers=[4+target_layer],
112
  transparency=transparency)
113
  truth = row['ground_truths']
 
92
  demo1 = gr.Interface(
93
  fn=classify_image,
94
  inputs=[
95
+ gr.Image(shape=(32, 32), label="Input Image", value='test_images/cat.jpg'),
96
  gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes"),
97
  gr.Checkbox(label="Show GradCAM?", value=True),
98
  #gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"),
 
101
  ],
102
  outputs=[gr.Gallery(label="Output Images", columns=2, rows=2),
103
  gr.Label(label='Top Classes')],
104
+ examples=[[f'test_images/{k}.jpg'] for k in classes.values()]
105
  )
106
 
107
  def show_mis_classifications(num_examples=20, grad_cam=True, target_layer=-2, transparency=0.5):
108
  result = list()
109
  for index, row in mis_classified_df.iterrows():
110
+ image = np.asarray(Image.open(f'misclassified_examples/{index}.jpg'))
111
  output_image, confidence = classify_image(image, top_classes=1, grad_cam=grad_cam, target_layers=[4+target_layer],
112
  transparency=transparency)
113
  truth = row['ground_truths']