Spaces:
Sleeping
Sleeping
from typing import List | |
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
import config as modelConfig | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from yolov3 import YOLOv3 | |
import utils | |
from utils import cells_to_bboxes, non_max_suppression, draw_bounding_boxes, YoloGradCAM | |
model = YOLOv3(num_classes=len(modelConfig.PASCAL_CLASSES)) | |
optimizer = torch.optim.Adam(model.parameters(), lr=0.00072/100, weight_decay=1e-4) | |
utils.load_checkpoint("checkpoint.pth.tar", model, optimizer, 0.00072/100) | |
scaled_anchors = ( | |
torch.tensor(modelConfig.ANCHORS) | |
* torch.tensor(modelConfig.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2) | |
).to(modelConfig.DEVICE) | |
yolo_grad_cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], use_cuda=False) | |
def detect_objects(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.4, enable_grad_cam: bool = False, transparency: float = 0.5) -> List[np.ndarray]: | |
transformed_image = modelConfig.transforms(image=image)["image"].unsqueeze(0) | |
#transformed_image = transformed_image.cuda() | |
output = model(transformed_image) | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = output[i].shape | |
anchor = scaled_anchors[i] | |
boxes_scale_i = cells_to_bboxes( | |
output[i], anchor, S=S, is_preds=True | |
) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = non_max_suppression( | |
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", | |
) | |
plot_img_with_bboxes = draw_bounding_boxes(image.copy(), nms_boxes, class_labels=modelConfig.PASCAL_CLASSES) | |
if not enable_grad_cam: | |
return [plot_img_with_bboxes] | |
grayscale_cam = yolo_grad_cam(transformed_image, scaled_anchors)[0, :, :] | |
img = cv2.resize(image, (416, 416)) | |
img = np.float32(img) / 255 | |
grad_cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency) | |
return [plot_img_with_bboxes, grad_cam_image] | |
def inference( | |
image: np.ndarray, | |
iou_thresh: float, thresh: float, | |
enable_grad_cam: str, | |
transparency: float, | |
): | |
results = detect_objects(image, iou_thresh, thresh, enable_grad_cam, transparency) | |
return results | |
title = "Object detection application using YoloV3 Model" | |
description = f"Object detection application using pre-trained YoloV3 model for Pascal VOC dataset. This app has GradCAM option also. \n The 20 classes in Pascal voc dataset are : {', '.join(modelConfig.PASCAL_CLASSES)}" | |
examples = [ | |
["images/000811.jpg", 0.6, 0.6, True, 0.6], | |
["images/000830.jpg", 0.5, 0.5, True, 0.6], | |
["images/000842.jpg", 0.6, 0.6, True, 0.6], | |
["images/001114.jpg", 0.4, 0.5, True, 0.6], | |
["images/001133.jpg", 0.7, 0.7, True, 0.6], | |
["images/001155.jpg", 0.7, 0.69, True, 0.6], | |
["images/000008.jpg", 0.66, 0.69, True, 0.6], | |
["images/000031.jpg", 0.6, 0.6, True, 0.6], | |
["images/000175.jpg", 0.6, 0.6, True, 0.6], | |
] | |
demo = gr.Interface( | |
inference, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Slider(0, 1, value=0.5, label="IOU Threshold"), | |
gr.Slider(0, 1, value=0.4, label="Threshold"), | |
gr.Checkbox(label="Show Grad Cam"), | |
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), | |
], | |
outputs=[ | |
gr.Gallery(rows=2, columns=1), | |
], | |
title=title, | |
description=description, | |
examples=examples, | |
) | |
demo.launch(debug=True) |