Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load tokenizer and model (simulating EvoTransformer with GPT-2-like architecture) | |
model_name = "username/evo_finetuned" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
model.eval() | |
# Mock EvoTransformer architecture traits | |
architecture = { | |
"layers": 6, | |
"heads": 8, | |
"ffn_dim": 2048, | |
"parameters": "58M" | |
} | |
def generate_response(user_input, max_length=100): | |
# Tokenize input with a conversational prompt | |
prompt = f"User: {user_input} Assistant: " | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) | |
input_ids = inputs["input_ids"] | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
do_sample=True, | |
top_p=0.9, | |
temperature=0.7, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response[len(prompt):].strip() | |
# Format output with architecture details | |
arch_info = ( | |
f"Model Architecture:\n" | |
f"- Layers: {architecture['layers']}\n" | |
f"- Attention Heads: {architecture['heads']}\n" | |
f"- FFN Dimension: {architecture['ffn_dim']}\n" | |
f"- Parameters: {architecture['parameters']}" | |
) | |
return f"**Response**: {response}\n\n**{arch_info}**" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Type your message here..."), | |
outputs="markdown", | |
title="EvoTransformer Chat Demo", | |
description="Chat with a simplified EvoTransformer model, designed to evolve Transformer architectures. Enter a message to get a response and view model details." | |
) | |
if __name__ == "__main__": | |
iface.launch() |