EvoAdvisor / inference.py
HemanM's picture
Update inference.py
2608adb verified
raw
history blame
1.99 kB
import torch
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from retriever import retrieve
from websearch import web_search
from openai import OpenAI
import os
# --- Load Evo Model ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
evo_model = EvoTransformerV22()
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device))
evo_model.to(device)
evo_model.eval()
# --- Load Tokenizer ---
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# --- EvoRAG+ Inference ---
def evo_rag_response(query):
# Step 1: get document context (from uploaded file)
rag_context = retrieve(query)
# Step 2: get online info (search/web)
web_context = web_search(query)
# Step 3: combine all into one input
combined = query + "\n\n" + rag_context + "\n\n" + web_context
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
input_ids = inputs["input_ids"].to(device)
# Step 4: Evo prediction
with torch.no_grad():
logits = evo_model(input_ids)
pred = int(torch.sigmoid(logits).item() > 0.5)
return f"Evo suggests: Option {pred + 1}"
# --- GPT-3.5 Inference (OpenAI >= 1.0.0) ---
openai_api_key = os.environ.get("OPENAI_API_KEY", "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") # Replace or use HF secret
client = OpenAI(api_key=openai_api_key)
def get_gpt_response(query, context):
try:
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Error from GPT: {e}"