EvoAdvisor / retriever.py
HemanM's picture
Create retriever.py
5b27dcb verified
raw
history blame
1.17 kB
import faiss
import os
import numpy as np
from sentence_transformers import SentenceTransformer
import pdfplumber
model = SentenceTransformer("all-MiniLM-L6-v2") # small, fast
index = None
doc_chunks = []
def read_pdf(path):
with pdfplumber.open(path) as pdf:
return "\n".join([page.extract_text() or "" for page in pdf.pages])
def chunk_text(text, chunk_size=250):
words = text.split()
return [" ".join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
def build_index_from_file(file_path):
global index, doc_chunks
ext = os.path.splitext(file_path)[-1].lower()
if ext == ".pdf":
text = read_pdf(file_path)
else:
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
doc_chunks = chunk_text(text)
embeddings = model.encode(doc_chunks, convert_to_numpy=True)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
def retrieve(query, top_k=3):
if index is None:
return ""
query_vec = model.encode([query])
D, I = index.search(np.array(query_vec), top_k)
return "\n\n".join([doc_chunks[i] for i in I[0]])