EvoAdvisor / inference.py
HemanM's picture
Update inference.py
63713d5 verified
raw
history blame
1.69 kB
import torch
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from retriever import retrieve
from openai import OpenAI
import os
# --- Load Evo Model ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
evo_model = EvoTransformerV22()
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device))
evo_model.to(device)
evo_model.eval()
# --- Load Tokenizer ---
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# --- EvoRAG Inference ---
def evo_rag_response(query):
# Step 1: retrieve document chunks
rag_context = retrieve(query)
# Step 2: combine query with retrieved context
combined = query + " " + rag_context
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
input_ids = inputs["input_ids"].to(device)
# Step 3: predict using Evo
with torch.no_grad():
logits = evo_model(input_ids)
pred = int(torch.sigmoid(logits).item() > 0.5)
return f"Evo suggests: Option {pred + 1}"
# --- GPT-3.5 Inference (OpenAI >= 1.0.0) ---
openai_api_key = os.environ.get("OPENAI_API_KEY", "sk-...") # Replace or use HF secret
client = OpenAI(api_key=openai_api_key)
def get_gpt_response(query, context):
try:
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Error from GPT: {e}"