Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer | |
from evo_model import EvoTransformerV22 | |
from retriever import retrieve | |
from openai import OpenAI | |
import os | |
# --- Load Evo Model --- | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
evo_model = EvoTransformerV22() | |
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device)) | |
evo_model.to(device) | |
evo_model.eval() | |
# --- Load Tokenizer --- | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# --- EvoRAG Inference --- | |
def evo_rag_response(query): | |
# Step 1: retrieve document chunks | |
rag_context = retrieve(query) | |
# Step 2: combine query with retrieved context | |
combined = query + " " + rag_context | |
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) | |
input_ids = inputs["input_ids"].to(device) | |
# Step 3: predict using Evo | |
with torch.no_grad(): | |
logits = evo_model(input_ids) | |
pred = int(torch.sigmoid(logits).item() > 0.5) | |
return f"Evo suggests: Option {pred + 1}" | |
# --- GPT-3.5 Inference (OpenAI >= 1.0.0) --- | |
openai_api_key = os.environ.get("OPENAI_API_KEY", "sk-...") # Replace or use HF secret | |
client = OpenAI(api_key=openai_api_key) | |
def get_gpt_response(query, context): | |
try: | |
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" | |
response = client.chat.completions.create( | |
model="gpt-3.5-turbo", | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.3 | |
) | |
return response.choices[0].message.content.strip() | |
except Exception as e: | |
return f"Error from GPT: {e}" | |