EvoAdvisor / inference.py
HemanM's picture
Update inference.py
d590322 verified
raw
history blame
1.72 kB
import torch
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from openai import OpenAI
import os
# Load Evo model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
evo_model = EvoTransformerV22()
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device))
evo_model.to(device)
evo_model.eval()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# 🧠 Evo logic (binary classification with sigmoid)
def get_evo_response(query, context):
combined = query + " " + context
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
logits = evo_model(input_ids)
pred = int(torch.sigmoid(logits).item() > 0.5)
return f"Evo suggests: Option {pred + 1}"
# 🤖 GPT-3.5 comparison using openai>=1.0.0
openai_api_key = os.environ.get("OPENAI_API_KEY", "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") # Replace with real key or set via HF secrets
client = OpenAI(api_key=openai_api_key)
def get_gpt_response(query, context):
try:
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": prompt}
],
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Error from GPT: {e}"