EvoAdvisor / retrain.py
HemanM's picture
Update retrain.py
5ff1d2c verified
raw
history blame
1.73 kB
import torch
import pandas as pd
from transformers import AutoTokenizer
from torch.utils.data import Dataset, DataLoader
from evo_model import EvoTransformerV22
import torch.nn as nn
import torch.optim as optim
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
class FeedbackDataset(Dataset):
def __init__(self, csv_file):
self.data = pd.read_csv(csv_file).dropna()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.data.iloc[idx]
combined = x['query'] + " " + x['context']
enc = tokenizer(combined, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
label = torch.tensor(float(x['label'])).unsqueeze(0) # Single logit
return enc['input_ids'].squeeze(0), label
def fine_tune_on_feedback(model_path="trained_model_evo_hellaswag.pt", feedback_file="feedback_log.csv"):
model = EvoTransformerV22()
model.load_state_dict(torch.load(model_path))
model.train()
dataset = FeedbackDataset(feedback_file)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
model.to("cpu")
optimizer = optim.Adam(model.parameters(), lr=1e-5)
loss_fn = nn.BCEWithLogitsLoss()
for epoch in range(2): # Light touch-up
total_loss = 0
for input_ids, labels in dataloader:
optimizer.zero_grad()
outputs = model(input_ids)
loss = loss_fn(outputs.view(-1), labels.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch + 1} Loss: {total_loss:.4f}")
torch.save(model.state_dict(), model_path)
print("✅ Evo updated from feedback.")