EvoAdvisor / inference.py
HemanM's picture
Update inference.py
fb120ec verified
raw
history blame
1.45 kB
import torch
from transformers import AutoTokenizer, OpenAIGPTLMHeadModel
from evo_model import EvoTransformerV22
# Load Evo model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
evo_model = EvoTransformerV22()
evo_model.load_state_dict(torch.load("trained_model/evo_hellaswag.pt", map_location=device))
evo_model.to(device)
evo_model.eval()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# 🧠 Evo logic
def get_evo_response(query, context):
combined = query + " " + context
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
logits = evo_model(input_ids)
pred = torch.argmax(logits, dim=1).item()
return f"Evo suggests: Option {pred + 1}" # Assumes binary classification (0 or 1)
# 🤖 GPT-3.5 comparison (optional)
import openai
openai.api_key = "sk-..." # Replace with your OpenAI API key
def get_gpt_response(query, context):
try:
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
return f"Error from GPT: {e}"