Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, OpenAIGPTLMHeadModel | |
from evo_model import EvoTransformerV22 | |
# Load Evo model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
evo_model = EvoTransformerV22() | |
evo_model.load_state_dict(torch.load("trained_model/evo_hellaswag.pt", map_location=device)) | |
evo_model.to(device) | |
evo_model.eval() | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# 🧠 Evo logic | |
def get_evo_response(query, context): | |
combined = query + " " + context | |
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) | |
input_ids = inputs["input_ids"].to(device) | |
with torch.no_grad(): | |
logits = evo_model(input_ids) | |
pred = torch.argmax(logits, dim=1).item() | |
return f"Evo suggests: Option {pred + 1}" # Assumes binary classification (0 or 1) | |
# 🤖 GPT-3.5 comparison (optional) | |
import openai | |
openai.api_key = "sk-..." # Replace with your OpenAI API key | |
def get_gpt_response(query, context): | |
try: | |
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.3 | |
) | |
return response['choices'][0]['message']['content'].strip() | |
except Exception as e: | |
return f"Error from GPT: {e}" | |