|
import torch |
|
import torch.nn as nn |
|
import math |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, max_len=512): |
|
super().__init__() |
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
return x + self.pe[:, :x.size(1)] |
|
|
|
class EvoDecoderModel(nn.Module): |
|
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1): |
|
super().__init__() |
|
self.embedding = nn.Embedding(vocab_size, d_model) |
|
self.pos_encoder = PositionalEncoding(d_model) |
|
decoder_layer = nn.TransformerDecoderLayer( |
|
d_model=d_model, |
|
nhead=nhead, |
|
dim_feedforward=dim_feedforward, |
|
dropout=dropout, |
|
batch_first=True |
|
) |
|
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) |
|
self.linear = nn.Linear(d_model, vocab_size) |
|
|
|
def forward(self, input_ids): |
|
embedded = self.embedding(input_ids) |
|
embedded = self.pos_encoder(embedded) |
|
seq_len = embedded.size(1) |
|
mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool() |
|
output = self.decoder(embedded, embedded, tgt_mask=mask) |
|
logits = self.linear(output) |
|
return logits |
|
|