Update evo_model.py
Browse files- evo_model.py +7 -13
evo_model.py
CHANGED
@@ -1,25 +1,23 @@
|
|
1 |
-
# evo_model.py — EvoDecoderModel with fixed positional encoding (max_len=512)
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
4 |
|
5 |
-
# Positional encoding used by transformer decoders
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=512):
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
-
position = torch.arange(0, max_len, dtype=torch.
|
11 |
-
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) #
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
-
return x + self.pe[:, :x.size(1)]
|
19 |
|
20 |
-
# Main EvoDecoder model
|
21 |
class EvoDecoderModel(nn.Module):
|
22 |
-
def __init__(self, vocab_size, d_model=
|
23 |
super().__init__()
|
24 |
self.embedding = nn.Embedding(vocab_size, d_model)
|
25 |
self.pos_encoder = PositionalEncoding(d_model)
|
@@ -36,12 +34,8 @@ class EvoDecoderModel(nn.Module):
|
|
36 |
def forward(self, input_ids):
|
37 |
embedded = self.embedding(input_ids)
|
38 |
embedded = self.pos_encoder(embedded)
|
39 |
-
|
40 |
-
# Create causal mask for autoregressive decoding
|
41 |
seq_len = embedded.size(1)
|
42 |
mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
|
43 |
-
|
44 |
-
# Use the input itself as memory for self-decoding
|
45 |
output = self.decoder(embedded, embedded, tgt_mask=mask)
|
46 |
logits = self.linear(output)
|
47 |
return logits
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import math
|
4 |
|
|
|
5 |
class PositionalEncoding(nn.Module):
|
6 |
+
def __init__(self, d_model, max_len=512):
|
7 |
super().__init__()
|
8 |
pe = torch.zeros(max_len, d_model)
|
9 |
+
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
10 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
11 |
pe[:, 0::2] = torch.sin(position * div_term)
|
12 |
pe[:, 1::2] = torch.cos(position * div_term)
|
13 |
+
pe = pe.unsqueeze(0) # [1, max_len, d_model]
|
14 |
self.register_buffer('pe', pe)
|
15 |
|
16 |
def forward(self, x):
|
17 |
+
return x + self.pe[:, :x.size(1)]
|
18 |
|
|
|
19 |
class EvoDecoderModel(nn.Module):
|
20 |
+
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
21 |
super().__init__()
|
22 |
self.embedding = nn.Embedding(vocab_size, d_model)
|
23 |
self.pos_encoder = PositionalEncoding(d_model)
|
|
|
34 |
def forward(self, input_ids):
|
35 |
embedded = self.embedding(input_ids)
|
36 |
embedded = self.pos_encoder(embedded)
|
|
|
|
|
37 |
seq_len = embedded.size(1)
|
38 |
mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
|
|
|
|
|
39 |
output = self.decoder(embedded, embedded, tgt_mask=mask)
|
40 |
logits = self.linear(output)
|
41 |
return logits
|