HemanM commited on
Commit
bf86bb3
·
verified ·
1 Parent(s): 7ff053d

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +7 -13
evo_model.py CHANGED
@@ -1,25 +1,23 @@
1
- # evo_model.py — EvoDecoderModel with fixed positional encoding (max_len=512)
2
  import torch
3
  import torch.nn as nn
 
4
 
5
- # Positional encoding used by transformer decoders
6
  class PositionalEncoding(nn.Module):
7
- def __init__(self, d_model, max_len=512): # Increased max_len
8
  super().__init__()
9
  pe = torch.zeros(max_len, d_model)
10
- position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
11
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
12
  pe[:, 0::2] = torch.sin(position * div_term)
13
  pe[:, 1::2] = torch.cos(position * div_term)
14
- pe = pe.unsqueeze(0) # shape: (1, max_len, d_model)
15
  self.register_buffer('pe', pe)
16
 
17
  def forward(self, x):
18
- return x + self.pe[:, :x.size(1)] # Match sequence length
19
 
20
- # Main EvoDecoder model
21
  class EvoDecoderModel(nn.Module):
22
- def __init__(self, vocab_size, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1):
23
  super().__init__()
24
  self.embedding = nn.Embedding(vocab_size, d_model)
25
  self.pos_encoder = PositionalEncoding(d_model)
@@ -36,12 +34,8 @@ class EvoDecoderModel(nn.Module):
36
  def forward(self, input_ids):
37
  embedded = self.embedding(input_ids)
38
  embedded = self.pos_encoder(embedded)
39
-
40
- # Create causal mask for autoregressive decoding
41
  seq_len = embedded.size(1)
42
  mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
43
-
44
- # Use the input itself as memory for self-decoding
45
  output = self.decoder(embedded, embedded, tgt_mask=mask)
46
  logits = self.linear(output)
47
  return logits
 
 
1
  import torch
2
  import torch.nn as nn
3
+ import math
4
 
 
5
  class PositionalEncoding(nn.Module):
6
+ def __init__(self, d_model, max_len=512):
7
  super().__init__()
8
  pe = torch.zeros(max_len, d_model)
9
+ position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
10
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
11
  pe[:, 0::2] = torch.sin(position * div_term)
12
  pe[:, 1::2] = torch.cos(position * div_term)
13
+ pe = pe.unsqueeze(0) # [1, max_len, d_model]
14
  self.register_buffer('pe', pe)
15
 
16
  def forward(self, x):
17
+ return x + self.pe[:, :x.size(1)]
18
 
 
19
  class EvoDecoderModel(nn.Module):
20
+ def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
21
  super().__init__()
22
  self.embedding = nn.Embedding(vocab_size, d_model)
23
  self.pos_encoder = PositionalEncoding(d_model)
 
34
  def forward(self, input_ids):
35
  embedded = self.embedding(input_ids)
36
  embedded = self.pos_encoder(embedded)
 
 
37
  seq_len = embedded.size(1)
38
  mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
 
 
39
  output = self.decoder(embedded, embedded, tgt_mask=mask)
40
  logits = self.linear(output)
41
  return logits