Update evo_model.py
Browse files- evo_model.py +28 -22
evo_model.py
CHANGED
@@ -1,41 +1,47 @@
|
|
1 |
-
# evo_model.py —
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
-
import math
|
5 |
|
|
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
-
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
-
div_term = torch.exp(torch.arange(0, d_model, 2) * (-
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) #
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
-
return x + self.pe[:, :x.size(1)]
|
19 |
|
|
|
20 |
class EvoDecoderModel(nn.Module):
|
21 |
-
def __init__(self, vocab_size, d_model=
|
22 |
super().__init__()
|
23 |
-
self.
|
24 |
-
self.pos_encoder = PositionalEncoding(d_model
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
28 |
-
|
29 |
-
self.lm_head = nn.Linear(d_model, vocab_size)
|
30 |
-
|
31 |
-
def generate_square_subsequent_mask(self, sz):
|
32 |
-
return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
|
33 |
|
34 |
def forward(self, input_ids):
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
1 |
+
# evo_model.py — EvoDecoderModel with fixed positional encoding (max_len=512)
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
4 |
|
5 |
+
# Positional encoding used by transformer decoders
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
+
def __init__(self, d_model, max_len=512): # Increased max_len
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
11 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
+
pe = pe.unsqueeze(0) # shape: (1, max_len, d_model)
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
+
return x + self.pe[:, :x.size(1)] # Match sequence length
|
19 |
|
20 |
+
# Main EvoDecoder model
|
21 |
class EvoDecoderModel(nn.Module):
|
22 |
+
def __init__(self, vocab_size, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1):
|
23 |
super().__init__()
|
24 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
25 |
+
self.pos_encoder = PositionalEncoding(d_model)
|
26 |
+
decoder_layer = nn.TransformerDecoderLayer(
|
27 |
+
d_model=d_model,
|
28 |
+
nhead=nhead,
|
29 |
+
dim_feedforward=dim_feedforward,
|
30 |
+
dropout=dropout,
|
31 |
+
batch_first=True
|
32 |
+
)
|
33 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
34 |
+
self.linear = nn.Linear(d_model, vocab_size)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def forward(self, input_ids):
|
37 |
+
embedded = self.embedding(input_ids)
|
38 |
+
embedded = self.pos_encoder(embedded)
|
39 |
|
40 |
+
# Create causal mask for autoregressive decoding
|
41 |
+
seq_len = embedded.size(1)
|
42 |
+
mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
|
43 |
|
44 |
+
# Use the input itself as memory for self-decoding
|
45 |
+
output = self.decoder(embedded, embedded, tgt_mask=mask)
|
46 |
+
logits = self.linear(output)
|
47 |
+
return logits
|