HemanM commited on
Commit
7ff053d
·
verified ·
1 Parent(s): ca6258b

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +28 -22
evo_model.py CHANGED
@@ -1,41 +1,47 @@
1
- # evo_model.py — Defines EvoDecoderModel used in inference and training
2
  import torch
3
  import torch.nn as nn
4
- import math
5
 
 
6
  class PositionalEncoding(nn.Module):
7
- def __init__(self, d_model, max_len=128):
8
  super().__init__()
9
  pe = torch.zeros(max_len, d_model)
10
- position = torch.arange(0, max_len).unsqueeze(1)
11
- div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
12
  pe[:, 0::2] = torch.sin(position * div_term)
13
  pe[:, 1::2] = torch.cos(position * div_term)
14
- pe = pe.unsqueeze(0) # [1, max_len, d_model]
15
  self.register_buffer('pe', pe)
16
 
17
  def forward(self, x):
18
- return x + self.pe[:, :x.size(1)]
19
 
 
20
  class EvoDecoderModel(nn.Module):
21
- def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_ff=2048, max_len=128):
22
  super().__init__()
23
- self.token_embed = nn.Embedding(vocab_size, d_model)
24
- self.pos_encoder = PositionalEncoding(d_model, max_len)
25
-
26
- decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, batch_first=True)
 
 
 
 
 
27
  self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
28
-
29
- self.lm_head = nn.Linear(d_model, vocab_size)
30
-
31
- def generate_square_subsequent_mask(self, sz):
32
- return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
33
 
34
  def forward(self, input_ids):
35
- x = self.token_embed(input_ids)
36
- x = self.pos_encoder(x)
37
 
38
- tgt_mask = self.generate_square_subsequent_mask(x.size(1)).to(x.device)
39
- x = self.decoder(x, x, tgt_mask=tgt_mask)
 
40
 
41
- return self.lm_head(x)
 
 
 
 
1
+ # evo_model.py — EvoDecoderModel with fixed positional encoding (max_len=512)
2
  import torch
3
  import torch.nn as nn
 
4
 
5
+ # Positional encoding used by transformer decoders
6
  class PositionalEncoding(nn.Module):
7
+ def __init__(self, d_model, max_len=512): # Increased max_len
8
  super().__init__()
9
  pe = torch.zeros(max_len, d_model)
10
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
11
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
12
  pe[:, 0::2] = torch.sin(position * div_term)
13
  pe[:, 1::2] = torch.cos(position * div_term)
14
+ pe = pe.unsqueeze(0) # shape: (1, max_len, d_model)
15
  self.register_buffer('pe', pe)
16
 
17
  def forward(self, x):
18
+ return x + self.pe[:, :x.size(1)] # Match sequence length
19
 
20
+ # Main EvoDecoder model
21
  class EvoDecoderModel(nn.Module):
22
+ def __init__(self, vocab_size, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1):
23
  super().__init__()
24
+ self.embedding = nn.Embedding(vocab_size, d_model)
25
+ self.pos_encoder = PositionalEncoding(d_model)
26
+ decoder_layer = nn.TransformerDecoderLayer(
27
+ d_model=d_model,
28
+ nhead=nhead,
29
+ dim_feedforward=dim_feedforward,
30
+ dropout=dropout,
31
+ batch_first=True
32
+ )
33
  self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
34
+ self.linear = nn.Linear(d_model, vocab_size)
 
 
 
 
35
 
36
  def forward(self, input_ids):
37
+ embedded = self.embedding(input_ids)
38
+ embedded = self.pos_encoder(embedded)
39
 
40
+ # Create causal mask for autoregressive decoding
41
+ seq_len = embedded.size(1)
42
+ mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
43
 
44
+ # Use the input itself as memory for self-decoding
45
+ output = self.decoder(embedded, embedded, tgt_mask=mask)
46
+ logits = self.linear(output)
47
+ return logits