|
import torch |
|
from transformers import GPT2Tokenizer |
|
from evo_model import EvoDecoderModel |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
vocab_size = tokenizer.vocab_size |
|
model = EvoDecoderModel(vocab_size=vocab_size, d_model=256, nhead=4, num_layers=3) |
|
model.load_state_dict(torch.load("evo_decoder.pt", map_location=torch.device("cpu"))) |
|
model.eval() |
|
|
|
def generate_response(prompt, max_length=100): |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
generated = input_ids.clone() |
|
|
|
with torch.no_grad(): |
|
for _ in range(max_length): |
|
output = model(generated, memory=None) |
|
next_token_logits = output[:, -1, :] |
|
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0) |
|
generated = torch.cat((generated, next_token), dim=1) |
|
|
|
if next_token.item() == tokenizer.eos_token_id: |
|
break |
|
|
|
return tokenizer.decode(generated[0], skip_special_tokens=True) |
|
|