EvoConvo / generate.py
HemanM's picture
Update generate.py
e80297e verified
import torch
import torch.nn.functional as F
from evo_decoder import EvoDecoder
from transformers import GPT2Tokenizer
# ✅ Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ✅ Load tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
model = EvoDecoder(
vocab_size=tokenizer.vocab_size,
d_model=256,
nhead=4,
num_layers=3,
dim_feedforward=512
).to(device)
# ✅ Load trained weights
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
model.eval()
# ✅ Response Generator
@torch.no_grad()
def generate_response(prompt, max_length=128, temperature=1.0, external_context=""):
model.eval()
# ✅ Force prompt into SQuAD-style format Evo was trained on
if external_context:
full_prompt = f"Context: {external_context}\nQuestion: {prompt}\nAnswer:"
else:
full_prompt = f"Question: {prompt}\nAnswer:"
input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to(device)
for _ in range(max_length):
logits = model(input_ids)
logits = logits[:, -1, :] / temperature
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
input_ids = torch.cat((input_ids, next_token), dim=1)
if next_token.item() == tokenizer.eos_token_id:
break
output = tokenizer.decode(input_ids.squeeze(), skip_special_tokens=True)
return output[len(full_prompt):].strip()