HemanM commited on
Commit
1c98e83
·
verified ·
1 Parent(s): ccff75d

Update generate.py

Browse files
Files changed (1) hide show
  1. generate.py +37 -0
generate.py CHANGED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # generate.py — Loads EvoDecoder model and generates responses
2
+ import torch
3
+ from transformers import AutoTokenizer
4
+ from evo_model import EvoDecoderModel
5
+
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+
8
+ # Load tokenizer and model
9
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
10
+ vocab_size = tokenizer.vocab_size
11
+
12
+ model = EvoDecoderModel(vocab_size=vocab_size).to(device)
13
+ model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
14
+ model.eval()
15
+
16
+ def generate_response(prompt, max_length=100, top_k=40):
17
+ input_text = f"User: {prompt}\nAssistant:"
18
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
19
+
20
+ for _ in range(max_length):
21
+ with torch.no_grad():
22
+ logits = model(input_ids)
23
+ next_token_logits = logits[:, -1, :]
24
+
25
+ # Top-k sampling
26
+ top_k_probs, top_k_indices = torch.topk(next_token_logits, top_k)
27
+ probs = torch.softmax(top_k_probs, dim=-1)
28
+ next_token = top_k_indices[torch.multinomial(probs, 1)]
29
+
30
+ input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
31
+
32
+ # Optional EOS stop condition
33
+ if next_token.item() == tokenizer.eos_token_id:
34
+ break
35
+
36
+ output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
37
+ return output.split("Assistant:")[-1].strip()