Update evo_model.py
Browse files- evo_model.py +2 -1
evo_model.py
CHANGED
@@ -32,6 +32,7 @@ class FeedForward(nn.Module):
|
|
32 |
self.net = nn.Sequential(
|
33 |
nn.Linear(d_model, dim_feedforward),
|
34 |
nn.ReLU(),
|
|
|
35 |
nn.Linear(dim_feedforward, d_model)
|
36 |
)
|
37 |
|
@@ -52,7 +53,7 @@ class TransformerBlock(nn.Module):
|
|
52 |
return x
|
53 |
|
54 |
class EvoDecoder(nn.Module):
|
55 |
-
def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=
|
56 |
super().__init__()
|
57 |
self.token_emb = nn.Embedding(vocab_size, d_model)
|
58 |
self.pos_emb = nn.Embedding(512, d_model)
|
|
|
32 |
self.net = nn.Sequential(
|
33 |
nn.Linear(d_model, dim_feedforward),
|
34 |
nn.ReLU(),
|
35 |
+
nn.Dropout(), # ✅ Important: was present in the training model
|
36 |
nn.Linear(dim_feedforward, d_model)
|
37 |
)
|
38 |
|
|
|
53 |
return x
|
54 |
|
55 |
class EvoDecoder(nn.Module):
|
56 |
+
def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=512):
|
57 |
super().__init__()
|
58 |
self.token_emb = nn.Embedding(vocab_size, d_model)
|
59 |
self.pos_emb = nn.Embedding(512, d_model)
|