Update generate.py
Browse files- generate.py +16 -29
generate.py
CHANGED
@@ -1,35 +1,22 @@
|
|
1 |
-
# generate.py
|
2 |
import torch
|
3 |
-
from
|
4 |
-
from evo_model import EvoDecoderModel
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
vocab_size = tokenizer.vocab_size
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
input_ids = inputs["input_ids"].to(device)
|
19 |
|
20 |
-
|
21 |
-
with torch.no_grad():
|
22 |
-
logits = model(input_ids)
|
23 |
-
|
24 |
-
next_token_logits = logits[:, -1, :] # shape (B, vocab_size)
|
25 |
-
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(0) # shape (1, 1)
|
26 |
-
|
27 |
-
# Append to input
|
28 |
-
input_ids = torch.cat([input_ids, next_token_id], dim=1)
|
29 |
-
|
30 |
-
# Stop if EOS token
|
31 |
-
if next_token_id.item() in tokenizer.all_special_ids:
|
32 |
-
break
|
33 |
-
|
34 |
-
output_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
35 |
-
return output_text[len(prompt):].strip()
|
|
|
|
|
1 |
import torch
|
2 |
+
from torch.nn import functional as F
|
|
|
3 |
|
4 |
+
def generate_text(model, tokenizer, prompt, max_length=100, temperature=1.0):
|
5 |
+
model.eval()
|
6 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
7 |
|
8 |
+
generated = input_ids
|
9 |
+
memory = torch.zeros((1, input_ids.size(1), model.config.d_model)).to(model.device)
|
|
|
10 |
|
11 |
+
with torch.no_grad():
|
12 |
+
for _ in range(max_length):
|
13 |
+
outputs = model(generated, memory)
|
14 |
+
next_token_logits = outputs[:, -1, :] / temperature
|
15 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
16 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
17 |
+
generated = torch.cat((generated, next_token), dim=1)
|
18 |
|
19 |
+
if next_token.item() == tokenizer.eos_token_id:
|
20 |
+
break
|
|
|
21 |
|
22 |
+
return tokenizer.decode(generated[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|