Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.nn import TransformerEncoder, TransformerEncoderLayer | |
class EvoEncoder(nn.Module): | |
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1): | |
super(EvoEncoder, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, d_model) | |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) | |
self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model)) | |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, | |
dim_feedforward=dim_feedforward, dropout=dropout) | |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.norm = nn.LayerNorm(d_model) | |
def forward(self, input_ids): | |
x = self.embedding(input_ids) | |
bsz = x.size(0) | |
# Add memory token | |
mem_token = self.memory_token.expand(bsz, -1, -1) # [B, 1, D] | |
x = torch.cat([mem_token, x], dim=1) | |
x = x + self.positional_encoding[:, :x.size(1), :] | |
x = self.transformer(x) | |
x = self.norm(x) | |
return x[:, 0] # return memory token output | |
class EvoTransformer(nn.Module): | |
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, | |
dim_feedforward=1024, dropout=0.1): | |
super(EvoTransformer, self).__init__() | |
self.encoder = EvoEncoder(vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout) | |
self.classifier = nn.Linear(d_model, 1) | |
def forward(self, input_ids): | |
x = self.encoder(input_ids) | |
return x # shape: [batch, d_model] | |