HemanM commited on
Commit
27c948e
·
verified ·
1 Parent(s): 38cb891

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +16 -11
evo_model.py CHANGED
@@ -3,32 +3,37 @@ import torch.nn as nn
3
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
4
 
5
  class EvoEncoder(nn.Module):
6
- def __init__(self, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
  super(EvoEncoder, self).__init__()
8
- self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model)) # Assuming max seq length = 512
 
 
9
 
10
  encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
11
  dim_feedforward=dim_feedforward, dropout=dropout)
12
  self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
  self.norm = nn.LayerNorm(d_model)
14
- self.memory_proj = nn.Linear(d_model, d_model)
15
 
16
- def forward(self, x):
 
 
 
 
 
 
 
17
  x = x + self.positional_encoding[:, :x.size(1), :]
18
  x = self.transformer(x)
19
  x = self.norm(x)
20
- memory_output = self.memory_proj(x[:, 0]) # Use first token
21
- return memory_output
22
 
23
  class EvoTransformer(nn.Module):
24
  def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6,
25
  dim_feedforward=1024, dropout=0.1):
26
  super(EvoTransformer, self).__init__()
27
- self.embedding = nn.Embedding(vocab_size, d_model)
28
- self.encoder = EvoEncoder(d_model, nhead, num_layers, dim_feedforward, dropout)
29
  self.classifier = nn.Linear(d_model, 1)
30
 
31
  def forward(self, input_ids):
32
- x = self.embedding(input_ids)
33
- memory_output = self.encoder(x)
34
- return memory_output
 
3
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
4
 
5
  class EvoEncoder(nn.Module):
6
+ def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
  super(EvoEncoder, self).__init__()
8
+ self.embedding = nn.Embedding(vocab_size, d_model)
9
+ self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
10
+ self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model))
11
 
12
  encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
13
  dim_feedforward=dim_feedforward, dropout=dropout)
14
  self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
15
  self.norm = nn.LayerNorm(d_model)
 
16
 
17
+ def forward(self, input_ids):
18
+ x = self.embedding(input_ids)
19
+ bsz = x.size(0)
20
+
21
+ # Add memory token
22
+ mem_token = self.memory_token.expand(bsz, -1, -1) # [B, 1, D]
23
+ x = torch.cat([mem_token, x], dim=1)
24
+
25
  x = x + self.positional_encoding[:, :x.size(1), :]
26
  x = self.transformer(x)
27
  x = self.norm(x)
28
+ return x[:, 0] # return memory token output
 
29
 
30
  class EvoTransformer(nn.Module):
31
  def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6,
32
  dim_feedforward=1024, dropout=0.1):
33
  super(EvoTransformer, self).__init__()
34
+ self.encoder = EvoEncoder(vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout)
 
35
  self.classifier = nn.Linear(d_model, 1)
36
 
37
  def forward(self, input_ids):
38
+ x = self.encoder(input_ids)
39
+ return x # shape: [batch, d_model]