Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +16 -11
evo_model.py
CHANGED
@@ -3,32 +3,37 @@ import torch.nn as nn
|
|
3 |
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
-
def __init__(self, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
|
7 |
super(EvoEncoder, self).__init__()
|
8 |
-
self.
|
|
|
|
|
9 |
|
10 |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
|
11 |
dim_feedforward=dim_feedforward, dropout=dropout)
|
12 |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
|
13 |
self.norm = nn.LayerNorm(d_model)
|
14 |
-
self.memory_proj = nn.Linear(d_model, d_model)
|
15 |
|
16 |
-
def forward(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
x = x + self.positional_encoding[:, :x.size(1), :]
|
18 |
x = self.transformer(x)
|
19 |
x = self.norm(x)
|
20 |
-
|
21 |
-
return memory_output
|
22 |
|
23 |
class EvoTransformer(nn.Module):
|
24 |
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6,
|
25 |
dim_feedforward=1024, dropout=0.1):
|
26 |
super(EvoTransformer, self).__init__()
|
27 |
-
self.
|
28 |
-
self.encoder = EvoEncoder(d_model, nhead, num_layers, dim_feedforward, dropout)
|
29 |
self.classifier = nn.Linear(d_model, 1)
|
30 |
|
31 |
def forward(self, input_ids):
|
32 |
-
x = self.
|
33 |
-
|
34 |
-
return memory_output
|
|
|
3 |
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
+
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
|
7 |
super(EvoEncoder, self).__init__()
|
8 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
9 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
10 |
+
self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model))
|
11 |
|
12 |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
|
13 |
dim_feedforward=dim_feedforward, dropout=dropout)
|
14 |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
|
15 |
self.norm = nn.LayerNorm(d_model)
|
|
|
16 |
|
17 |
+
def forward(self, input_ids):
|
18 |
+
x = self.embedding(input_ids)
|
19 |
+
bsz = x.size(0)
|
20 |
+
|
21 |
+
# Add memory token
|
22 |
+
mem_token = self.memory_token.expand(bsz, -1, -1) # [B, 1, D]
|
23 |
+
x = torch.cat([mem_token, x], dim=1)
|
24 |
+
|
25 |
x = x + self.positional_encoding[:, :x.size(1), :]
|
26 |
x = self.transformer(x)
|
27 |
x = self.norm(x)
|
28 |
+
return x[:, 0] # return memory token output
|
|
|
29 |
|
30 |
class EvoTransformer(nn.Module):
|
31 |
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6,
|
32 |
dim_feedforward=1024, dropout=0.1):
|
33 |
super(EvoTransformer, self).__init__()
|
34 |
+
self.encoder = EvoEncoder(vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout)
|
|
|
35 |
self.classifier = nn.Linear(d_model, 1)
|
36 |
|
37 |
def forward(self, input_ids):
|
38 |
+
x = self.encoder(input_ids)
|
39 |
+
return x # shape: [batch, d_model]
|
|