Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class TransformerEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.embedding = nn.Embedding(config["vocab_size"], config["d_model"]) | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=config["d_model"], | |
nhead=config["nhead"], | |
dim_feedforward=config["ff_dim"], | |
dropout=0.1, | |
activation="gelu", | |
batch_first=True, | |
) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=config["num_layers"]) | |
self.memory_token = nn.Parameter(torch.randn(1, 1, config["d_model"])) | |
self.memory_proj = nn.Linear(config["d_model"], config["d_model"]) | |
def forward(self, x): | |
x = self.embedding(x) | |
B, T, D = x.shape | |
memory = self.memory_token.repeat(B, 1, 1) | |
x = torch.cat([memory, x], dim=1) | |
x = self.transformer(x) | |
memory_out = x[:, 0] | |
return self.memory_proj(memory_out) | |
class EvoTransformer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
config = { | |
"vocab_size": 30522, | |
"d_model": 384, | |
"nhead": 6, | |
"ff_dim": 1024, | |
"num_layers": 6, | |
} | |
self.encoder = TransformerEncoder(config) | |
self.classifier = nn.Linear(config["d_model"], 2) | |
def forward(self, x): | |
x = self.encoder(x) | |
return self.classifier(x) | |