Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +39 -20
evo_model.py
CHANGED
@@ -1,26 +1,45 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
|
4 |
|
5 |
-
class
|
6 |
-
def __init__(self,
|
7 |
-
super(
|
8 |
-
self.embedding = nn.Embedding(vocab_size, d_model)
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
x = torch.cat([memory_token, x], dim=1)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
x = self.transformer(x)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
|
5 |
+
class TransformerEncoder(nn.Module):
|
6 |
+
def __init__(self, config):
|
7 |
+
super().__init__()
|
8 |
+
self.embedding = nn.Embedding(config["vocab_size"], config["d_model"])
|
9 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
10 |
+
d_model=config["d_model"],
|
11 |
+
nhead=config["nhead"],
|
12 |
+
dim_feedforward=config["ff_dim"],
|
13 |
+
dropout=0.1,
|
14 |
+
activation="gelu",
|
15 |
+
batch_first=True,
|
16 |
+
)
|
17 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=config["num_layers"])
|
18 |
+
self.memory_token = nn.Parameter(torch.randn(1, 1, config["d_model"]))
|
19 |
+
self.memory_proj = nn.Linear(config["d_model"], config["d_model"])
|
|
|
20 |
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.embedding(x)
|
23 |
+
B, T, D = x.shape
|
24 |
+
memory = self.memory_token.repeat(B, 1, 1)
|
25 |
+
x = torch.cat([memory, x], dim=1)
|
26 |
x = self.transformer(x)
|
27 |
+
memory_out = x[:, 0]
|
28 |
+
return self.memory_proj(memory_out)
|
29 |
+
|
30 |
+
class EvoTransformer(nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super().__init__()
|
33 |
+
config = {
|
34 |
+
"vocab_size": 30522,
|
35 |
+
"d_model": 384,
|
36 |
+
"nhead": 6,
|
37 |
+
"ff_dim": 1024,
|
38 |
+
"num_layers": 6,
|
39 |
+
}
|
40 |
+
self.encoder = TransformerEncoder(config)
|
41 |
+
self.classifier = nn.Linear(config["d_model"], 2)
|
42 |
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.encoder(x)
|
45 |
+
return self.classifier(x)
|