HemanM commited on
Commit
2f2edb0
·
verified ·
1 Parent(s): 1e2845c

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +39 -20
evo_model.py CHANGED
@@ -1,26 +1,45 @@
1
  import torch
2
  import torch.nn as nn
3
- from torch.nn import TransformerEncoder, TransformerEncoderLayer
4
 
5
- class EvoTransformer(nn.Module):
6
- def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
- super(EvoTransformer, self).__init__()
8
- self.embedding = nn.Embedding(vocab_size, d_model)
9
- self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
10
-
11
- encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
12
- self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
-
14
- self.memory_proj = nn.Linear(d_model, d_model)
15
- # 🔥 self.norm removed
16
-
17
- def forward(self, input_ids):
18
- x = self.embedding(input_ids)
19
- memory_token = self.memory_token.expand(x.size(0), -1, -1)
20
- x = torch.cat([memory_token, x], dim=1)
21
 
 
 
 
 
 
22
  x = self.transformer(x)
23
- # 🔥 x = self.norm(x) removed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- memory_output = self.memory_proj(x[:, 0])
26
- return memory_output
 
 
1
  import torch
2
  import torch.nn as nn
3
+ import torch.nn.functional as F
4
 
5
+ class TransformerEncoder(nn.Module):
6
+ def __init__(self, config):
7
+ super().__init__()
8
+ self.embedding = nn.Embedding(config["vocab_size"], config["d_model"])
9
+ encoder_layer = nn.TransformerEncoderLayer(
10
+ d_model=config["d_model"],
11
+ nhead=config["nhead"],
12
+ dim_feedforward=config["ff_dim"],
13
+ dropout=0.1,
14
+ activation="gelu",
15
+ batch_first=True,
16
+ )
17
+ self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=config["num_layers"])
18
+ self.memory_token = nn.Parameter(torch.randn(1, 1, config["d_model"]))
19
+ self.memory_proj = nn.Linear(config["d_model"], config["d_model"])
 
20
 
21
+ def forward(self, x):
22
+ x = self.embedding(x)
23
+ B, T, D = x.shape
24
+ memory = self.memory_token.repeat(B, 1, 1)
25
+ x = torch.cat([memory, x], dim=1)
26
  x = self.transformer(x)
27
+ memory_out = x[:, 0]
28
+ return self.memory_proj(memory_out)
29
+
30
+ class EvoTransformer(nn.Module):
31
+ def __init__(self):
32
+ super().__init__()
33
+ config = {
34
+ "vocab_size": 30522,
35
+ "d_model": 384,
36
+ "nhead": 6,
37
+ "ff_dim": 1024,
38
+ "num_layers": 6,
39
+ }
40
+ self.encoder = TransformerEncoder(config)
41
+ self.classifier = nn.Linear(config["d_model"], 2)
42
 
43
+ def forward(self, x):
44
+ x = self.encoder(x)
45
+ return self.classifier(x)