EvoPlatform / app.py
HemanM's picture
Update app.py
f18c30e verified
raw
history blame
2.1 kB
import gradio as gr
from inference import get_evo_response, get_gpt_response
from logger import log_feedback
import retrain
import pandas as pd
import os
def advisor_interface(query, context, feedback_choice):
evo_output, evo_reasoning = get_evo_response(query, context)
gpt_output = get_gpt_response(query, context)
if feedback_choice != "No feedback":
label = 1 if feedback_choice == "πŸ‘ Helpful" else 0
log_feedback(query, context, evo_output, label)
return evo_reasoning, gpt_output, load_history()
def retrain_evo():
retrain.fine_tune_on_feedback()
return "βœ… Evo retrained on feedback.", load_history()
def load_history():
if os.path.exists("feedback_log.csv"):
df = pd.read_csv("feedback_log.csv")
return df.tail(10).to_markdown(index=False)
return "No history available yet."
with gr.Blocks() as demo:
gr.Markdown("## 🧠 EvoRAG – Retrieval-Augmented Adaptive AI")
with gr.Row():
query = gr.Textbox(label="πŸ“ Ask a financial question", placeholder="e.g. Should we reduce exposure to Fund A?")
context = gr.Textbox(label="πŸ“‚ Paste memo, news, or background", placeholder="e.g. Tech Fund A underperformed 3.2%...")
with gr.Row():
feedback = gr.Radio(["πŸ‘ Helpful", "πŸ‘Ž Not Helpful", "No feedback"], label="Was Evo’s answer useful?", value="No feedback")
with gr.Row():
evo_out = gr.Textbox(label="πŸ”¬ EvoRAG Suggestion (with reasoning)")
gpt_out = gr.Textbox(label="πŸ€– GPT-3.5 Suggestion")
run_button = gr.Button("Run Advisors")
run_button.click(fn=advisor_interface, inputs=[query, context, feedback], outputs=[evo_out, gpt_out, gr.Textbox(label="πŸ“œ Recent History")])
gr.Markdown("---")
gr.Markdown("### πŸ” Retrain Evo from Feedback")
retrain_button = gr.Button("πŸ“š Retrain Evo")
retrain_output = gr.Textbox(label="πŸ› οΈ Retrain Status")
history_output = gr.Textbox(label="πŸ“œ Recent History")
retrain_button.click(fn=retrain_evo, inputs=[], outputs=[retrain_output, history_output])
demo.launch()