Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from inference import get_evo_response, get_gpt_response
|
3 |
from logger import log_feedback
|
|
|
|
|
|
|
4 |
|
5 |
-
def advisor_interface(query,
|
6 |
-
|
7 |
-
|
8 |
-
context = get_context_from_file(file)
|
9 |
-
|
10 |
-
evo_output = get_evo_response(query, file)
|
11 |
-
gpt_output = get_gpt_response(query, file)
|
12 |
|
13 |
if feedback_choice != "No feedback":
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
with gr.Blocks() as demo:
|
19 |
-
gr.Markdown("## π§ EvoRAG β Retrieval-Augmented Adaptive AI
|
20 |
|
21 |
with gr.Row():
|
22 |
query = gr.Textbox(label="π Ask a financial question", placeholder="e.g. Should we reduce exposure to Fund A?")
|
23 |
-
|
24 |
-
file = gr.File(label="π Upload policy or memo (.pdf or .txt)", type="file")
|
25 |
|
26 |
with gr.Row():
|
27 |
feedback = gr.Radio(["π Helpful", "π Not Helpful", "No feedback"], label="Was Evoβs answer useful?", value="No feedback")
|
28 |
|
29 |
with gr.Row():
|
30 |
-
evo_out = gr.Textbox(label="π¬ EvoRAG Suggestion")
|
31 |
gpt_out = gr.Textbox(label="π€ GPT-3.5 Suggestion")
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from inference import get_evo_response, get_gpt_response
|
3 |
from logger import log_feedback
|
4 |
+
import retrain
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
|
8 |
+
def advisor_interface(query, context, feedback_choice):
|
9 |
+
evo_output, evo_reasoning = get_evo_response(query, context)
|
10 |
+
gpt_output = get_gpt_response(query, context)
|
|
|
|
|
|
|
|
|
11 |
|
12 |
if feedback_choice != "No feedback":
|
13 |
+
label = 1 if feedback_choice == "π Helpful" else 0
|
14 |
+
log_feedback(query, context, evo_output, label)
|
15 |
+
|
16 |
+
return evo_reasoning, gpt_output, load_history()
|
17 |
+
|
18 |
+
def retrain_evo():
|
19 |
+
retrain.fine_tune_on_feedback()
|
20 |
+
return "β
Evo retrained on feedback.", load_history()
|
21 |
|
22 |
+
def load_history():
|
23 |
+
if os.path.exists("feedback_log.csv"):
|
24 |
+
df = pd.read_csv("feedback_log.csv")
|
25 |
+
return df.tail(10).to_markdown(index=False)
|
26 |
+
return "No history available yet."
|
27 |
|
28 |
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("## π§ EvoRAG β Retrieval-Augmented Adaptive AI")
|
30 |
|
31 |
with gr.Row():
|
32 |
query = gr.Textbox(label="π Ask a financial question", placeholder="e.g. Should we reduce exposure to Fund A?")
|
33 |
+
context = gr.Textbox(label="π Paste memo, news, or background", placeholder="e.g. Tech Fund A underperformed 3.2%...")
|
|
|
34 |
|
35 |
with gr.Row():
|
36 |
feedback = gr.Radio(["π Helpful", "π Not Helpful", "No feedback"], label="Was Evoβs answer useful?", value="No feedback")
|
37 |
|
38 |
with gr.Row():
|
39 |
+
evo_out = gr.Textbox(label="π¬ EvoRAG Suggestion (with reasoning)")
|
40 |
gpt_out = gr.Textbox(label="π€ GPT-3.5 Suggestion")
|
41 |
|
42 |
+
run_button = gr.Button("Run Advisors")
|
43 |
+
run_button.click(fn=advisor_interface, inputs=[query, context, feedback], outputs=[evo_out, gpt_out, gr.Textbox(label="π Recent History")])
|
44 |
+
|
45 |
+
gr.Markdown("---")
|
46 |
+
gr.Markdown("### π Retrain Evo from Feedback")
|
47 |
+
retrain_button = gr.Button("π Retrain Evo")
|
48 |
+
retrain_output = gr.Textbox(label="π οΈ Retrain Status")
|
49 |
+
history_output = gr.Textbox(label="π Recent History")
|
50 |
+
|
51 |
+
retrain_button.click(fn=retrain_evo, inputs=[], outputs=[retrain_output, history_output])
|
52 |
|
53 |
demo.launch()
|