Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.nn import TransformerEncoder, TransformerEncoderLayer | |
class EvoTransformer(nn.Module): | |
def __init__(self, vocab_size=30522, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1, num_labels=2): | |
super(EvoTransformer, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, d_model) | |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) | |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout) | |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.norm = nn.LayerNorm(d_model) | |
self.memory_proj = nn.Linear(d_model, d_model) | |
self.classifier = nn.Linear(d_model, num_labels) | |
def forward(self, input_ids): | |
x = self.embedding(input_ids) | |
memory_token = self.memory_token.expand(x.size(0), -1, -1) | |
x = torch.cat([memory_token, x], dim=1) | |
x = self.transformer(x) | |
x = self.norm(x) | |
memory_output = self.memory_proj(x[:, 0]) | |
logits = self.classifier(memory_output) | |
return logits | |