HemanM commited on
Commit
cad50da
·
verified ·
1 Parent(s): 2f2edb0

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +26 -41
evo_model.py CHANGED
@@ -1,45 +1,30 @@
1
  import torch
2
  import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
- class TransformerEncoder(nn.Module):
6
- def __init__(self, config):
7
- super().__init__()
8
- self.embedding = nn.Embedding(config["vocab_size"], config["d_model"])
9
- encoder_layer = nn.TransformerEncoderLayer(
10
- d_model=config["d_model"],
11
- nhead=config["nhead"],
12
- dim_feedforward=config["ff_dim"],
13
- dropout=0.1,
14
- activation="gelu",
15
- batch_first=True,
16
- )
17
- self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=config["num_layers"])
18
- self.memory_token = nn.Parameter(torch.randn(1, 1, config["d_model"]))
19
- self.memory_proj = nn.Linear(config["d_model"], config["d_model"])
20
-
21
- def forward(self, x):
22
- x = self.embedding(x)
23
- B, T, D = x.shape
24
- memory = self.memory_token.repeat(B, 1, 1)
25
- x = torch.cat([memory, x], dim=1)
26
- x = self.transformer(x)
27
- memory_out = x[:, 0]
28
- return self.memory_proj(memory_out)
29
 
30
  class EvoTransformer(nn.Module):
31
- def __init__(self):
32
- super().__init__()
33
- config = {
34
- "vocab_size": 30522,
35
- "d_model": 384,
36
- "nhead": 6,
37
- "ff_dim": 1024,
38
- "num_layers": 6,
39
- }
40
- self.encoder = TransformerEncoder(config)
41
- self.classifier = nn.Linear(config["d_model"], 2)
42
-
43
- def forward(self, x):
44
- x = self.encoder(x)
45
- return self.classifier(x)
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  import torch.nn as nn
3
+ from torch.nn import TransformerEncoder, TransformerEncoderLayer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  class EvoTransformer(nn.Module):
6
+ def __init__(self, vocab_size=30522, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1, num_labels=2):
7
+ super(EvoTransformer, self).__init__()
8
+ self.embedding = nn.Embedding(vocab_size, d_model)
9
+ self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
10
+
11
+ encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
12
+ self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
+ self.norm = nn.LayerNorm(d_model)
14
+
15
+ self.memory_proj = nn.Linear(d_model, d_model)
16
+ self.classifier = nn.Linear(d_model, num_labels)
17
+
18
+ def forward(self, input_ids):
19
+ x = self.embedding(input_ids)
20
+
21
+ memory_token = self.memory_token.expand(x.size(0), -1, -1)
22
+ x = torch.cat([memory_token, x], dim=1)
23
+
24
+ x = self.transformer(x)
25
+ x = self.norm(x)
26
+
27
+ memory_output = self.memory_proj(x[:, 0])
28
+ logits = self.classifier(memory_output)
29
+
30
+ return logits