Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +26 -41
evo_model.py
CHANGED
@@ -1,45 +1,30 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
|
4 |
-
|
5 |
-
class TransformerEncoder(nn.Module):
|
6 |
-
def __init__(self, config):
|
7 |
-
super().__init__()
|
8 |
-
self.embedding = nn.Embedding(config["vocab_size"], config["d_model"])
|
9 |
-
encoder_layer = nn.TransformerEncoderLayer(
|
10 |
-
d_model=config["d_model"],
|
11 |
-
nhead=config["nhead"],
|
12 |
-
dim_feedforward=config["ff_dim"],
|
13 |
-
dropout=0.1,
|
14 |
-
activation="gelu",
|
15 |
-
batch_first=True,
|
16 |
-
)
|
17 |
-
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=config["num_layers"])
|
18 |
-
self.memory_token = nn.Parameter(torch.randn(1, 1, config["d_model"]))
|
19 |
-
self.memory_proj = nn.Linear(config["d_model"], config["d_model"])
|
20 |
-
|
21 |
-
def forward(self, x):
|
22 |
-
x = self.embedding(x)
|
23 |
-
B, T, D = x.shape
|
24 |
-
memory = self.memory_token.repeat(B, 1, 1)
|
25 |
-
x = torch.cat([memory, x], dim=1)
|
26 |
-
x = self.transformer(x)
|
27 |
-
memory_out = x[:, 0]
|
28 |
-
return self.memory_proj(memory_out)
|
29 |
|
30 |
class EvoTransformer(nn.Module):
|
31 |
-
def __init__(self):
|
32 |
-
super().__init__()
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
self.
|
41 |
-
self.classifier = nn.Linear(
|
42 |
-
|
43 |
-
def forward(self,
|
44 |
-
x = self.
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class EvoTransformer(nn.Module):
|
6 |
+
def __init__(self, vocab_size=30522, d_model=384, nhead=6, num_layers=6, dim_feedforward=1024, dropout=0.1, num_labels=2):
|
7 |
+
super(EvoTransformer, self).__init__()
|
8 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
9 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
10 |
+
|
11 |
+
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
|
12 |
+
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
|
13 |
+
self.norm = nn.LayerNorm(d_model)
|
14 |
+
|
15 |
+
self.memory_proj = nn.Linear(d_model, d_model)
|
16 |
+
self.classifier = nn.Linear(d_model, num_labels)
|
17 |
+
|
18 |
+
def forward(self, input_ids):
|
19 |
+
x = self.embedding(input_ids)
|
20 |
+
|
21 |
+
memory_token = self.memory_token.expand(x.size(0), -1, -1)
|
22 |
+
x = torch.cat([memory_token, x], dim=1)
|
23 |
+
|
24 |
+
x = self.transformer(x)
|
25 |
+
x = self.norm(x)
|
26 |
+
|
27 |
+
memory_output = self.memory_proj(x[:, 0])
|
28 |
+
logits = self.classifier(memory_output)
|
29 |
+
|
30 |
+
return logits
|