Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class EvoEncoder(nn.Module): | |
def __init__(self, d_model=384, nhead=6, dim_feedforward=1024, num_layers=6): | |
super().__init__() | |
self.embedding = nn.Embedding(30522, d_model) # BERT-base vocab size | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=d_model, | |
nhead=nhead, | |
dim_feedforward=dim_feedforward, | |
batch_first=True, | |
) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.memory_proj = nn.Linear(d_model, d_model) | |
def forward(self, input_ids): | |
x = self.embedding(input_ids) | |
x = self.transformer(x) | |
x = x.mean(dim=1) | |
return self.memory_proj(x) | |
class EvoTransformer(nn.Module): | |
def __init__(self, d_model=384): | |
super().__init__() | |
self.encoder = EvoEncoder(d_model=d_model) | |
self.classifier = nn.Linear(d_model, 2) | |
def forward(self, input_ids): | |
x = self.encoder(input_ids) | |
return x | |