Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +19 -26
evo_model.py
CHANGED
@@ -1,39 +1,32 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
-
def __init__(self,
|
7 |
-
super(
|
8 |
-
self.embedding = nn.Embedding(
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
self.
|
|
|
16 |
|
17 |
def forward(self, input_ids):
|
18 |
x = self.embedding(input_ids)
|
19 |
-
bsz = x.size(0)
|
20 |
-
|
21 |
-
# Add memory token
|
22 |
-
mem_token = self.memory_token.expand(bsz, -1, -1) # [B, 1, D]
|
23 |
-
x = torch.cat([mem_token, x], dim=1)
|
24 |
-
|
25 |
-
x = x + self.positional_encoding[:, :x.size(1), :]
|
26 |
x = self.transformer(x)
|
27 |
-
x =
|
28 |
-
return x
|
29 |
|
30 |
class EvoTransformer(nn.Module):
|
31 |
-
def __init__(self,
|
32 |
-
|
33 |
-
|
34 |
-
self.
|
35 |
-
self.classifier = nn.Linear(d_model, 1)
|
36 |
|
37 |
def forward(self, input_ids):
|
38 |
x = self.encoder(input_ids)
|
39 |
-
return x
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
+
def __init__(self, d_model=384, nhead=6, dim_feedforward=1024, num_layers=6):
|
7 |
+
super().__init__()
|
8 |
+
self.embedding = nn.Embedding(30522, d_model) # BERT-base vocab size
|
9 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
10 |
+
d_model=d_model,
|
11 |
+
nhead=nhead,
|
12 |
+
dim_feedforward=dim_feedforward,
|
13 |
+
batch_first=True,
|
14 |
+
)
|
15 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
+
self.memory_proj = nn.Linear(d_model, d_model)
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
x = self.embedding(input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
x = self.transformer(x)
|
21 |
+
x = x.mean(dim=1)
|
22 |
+
return self.memory_proj(x)
|
23 |
|
24 |
class EvoTransformer(nn.Module):
|
25 |
+
def __init__(self, d_model=384):
|
26 |
+
super().__init__()
|
27 |
+
self.encoder = EvoEncoder(d_model=d_model)
|
28 |
+
self.classifier = nn.Linear(d_model, 2)
|
|
|
29 |
|
30 |
def forward(self, input_ids):
|
31 |
x = self.encoder(input_ids)
|
32 |
+
return x
|