Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +7 -8
evo_model.py
CHANGED
@@ -3,17 +3,18 @@ import torch.nn as nn
|
|
3 |
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
4 |
|
5 |
class EvoTransformer(nn.Module):
|
6 |
-
def __init__(self, vocab_size=30522, d_model=
|
7 |
super(EvoTransformer, self).__init__()
|
8 |
self.embedding = nn.Embedding(vocab_size, d_model)
|
9 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
10 |
-
|
11 |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
|
12 |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
|
13 |
-
|
14 |
-
|
15 |
self.memory_proj = nn.Linear(d_model, d_model)
|
16 |
-
self.
|
|
|
|
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
x = self.embedding(input_ids)
|
@@ -25,6 +26,4 @@ class EvoTransformer(nn.Module):
|
|
25 |
x = self.norm(x)
|
26 |
|
27 |
memory_output = self.memory_proj(x[:, 0])
|
28 |
-
|
29 |
-
|
30 |
-
return logits
|
|
|
3 |
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
4 |
|
5 |
class EvoTransformer(nn.Module):
|
6 |
+
def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
|
7 |
super(EvoTransformer, self).__init__()
|
8 |
self.embedding = nn.Embedding(vocab_size, d_model)
|
9 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
10 |
+
|
11 |
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
|
12 |
self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
|
13 |
+
|
|
|
14 |
self.memory_proj = nn.Linear(d_model, d_model)
|
15 |
+
self.norm = nn.LayerNorm(d_model)
|
16 |
+
|
17 |
+
self.classifier = nn.Linear(d_model, 1) # Matches saved model: output is a single logit
|
18 |
|
19 |
def forward(self, input_ids):
|
20 |
x = self.embedding(input_ids)
|
|
|
26 |
x = self.norm(x)
|
27 |
|
28 |
memory_output = self.memory_proj(x[:, 0])
|
29 |
+
return memory_output
|
|
|
|