HemanM commited on
Commit
84c0256
·
verified ·
1 Parent(s): 5ed25f6

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +20 -17
evo_model.py CHANGED
@@ -1,29 +1,32 @@
1
- import torch
2
  import torch.nn as nn
3
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
4
 
5
- class EvoTransformer(nn.Module):
6
- def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
- super(EvoTransformer, self).__init__()
8
- self.embedding = nn.Embedding(vocab_size, d_model)
9
- self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
10
-
11
- encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
12
- self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
-
14
- self.memory_proj = nn.Linear(d_model, d_model)
15
  self.norm = nn.LayerNorm(d_model)
16
-
17
- self.classifier = nn.Linear(d_model, 1) # Matches saved model: output is a single logit
18
 
19
  def forward(self, input_ids):
20
  x = self.embedding(input_ids)
21
-
22
  memory_token = self.memory_token.expand(x.size(0), -1, -1)
23
  x = torch.cat([memory_token, x], dim=1)
24
-
25
  x = self.transformer(x)
26
  x = self.norm(x)
 
27
 
28
- memory_output = self.memory_proj(x[:, 0])
29
- return memory_output
 
 
 
 
 
 
 
 
 
1
  import torch.nn as nn
2
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
3
 
4
+ class EvoEncoder(nn.Module):
5
+ def __init__(self, d_model=512, nhead=8, dim_feedforward=1024, num_layers=6, dropout=0.1):
6
+ super().__init__()
7
+ self.embedding = nn.Embedding(30522, d_model)
8
+ self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model))
9
+ encoder_layers = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
10
+ self.transformer = TransformerEncoder(encoder_layers, num_layers)
 
 
 
11
  self.norm = nn.LayerNorm(d_model)
12
+ self.memory_proj = nn.Linear(d_model, d_model)
13
+ self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
14
 
15
  def forward(self, input_ids):
16
  x = self.embedding(input_ids)
17
+ x += self.positional_encoding[:, :x.size(1)]
18
  memory_token = self.memory_token.expand(x.size(0), -1, -1)
19
  x = torch.cat([memory_token, x], dim=1)
 
20
  x = self.transformer(x)
21
  x = self.norm(x)
22
+ return self.memory_proj(x[:, 0, :])
23
 
24
+ class EvoTransformer(nn.Module):
25
+ def __init__(self):
26
+ super().__init__()
27
+ self.encoder = EvoEncoder()
28
+ self.classifier = nn.Linear(512, 1)
29
+
30
+ def forward(self, input_ids):
31
+ x = self.encoder(input_ids)
32
+ return x