Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +10 -5
evo_model.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
-
def __init__(self, d_model=
|
7 |
super().__init__()
|
8 |
self.embedding = nn.Embedding(30522, d_model)
|
9 |
encoder_layer = nn.TransformerEncoderLayer(
|
@@ -14,18 +13,24 @@ class EvoEncoder(nn.Module):
|
|
14 |
)
|
15 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
self.memory_enabled = memory_enabled
|
|
|
|
|
|
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
x = self.embedding(input_ids)
|
|
|
|
|
|
|
20 |
x = self.transformer(x)
|
21 |
-
return x[:, 0] # first token
|
22 |
|
23 |
class EvoTransformer(nn.Module):
|
24 |
-
def __init__(self, d_model=
|
25 |
super().__init__()
|
26 |
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
|
27 |
self.classifier = nn.Linear(d_model, num_classes)
|
28 |
|
29 |
def forward(self, input_ids):
|
30 |
x = self.encoder(input_ids)
|
31 |
-
return self.classifier(x)
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
import torch.nn.functional as F
|
3 |
|
4 |
class EvoEncoder(nn.Module):
|
5 |
+
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
|
6 |
super().__init__()
|
7 |
self.embedding = nn.Embedding(30522, d_model)
|
8 |
encoder_layer = nn.TransformerEncoderLayer(
|
|
|
13 |
)
|
14 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
15 |
self.memory_enabled = memory_enabled
|
16 |
+
if memory_enabled:
|
17 |
+
self.memory_proj = nn.Linear(d_model, d_model)
|
18 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
19 |
|
20 |
def forward(self, input_ids):
|
21 |
x = self.embedding(input_ids)
|
22 |
+
if self.memory_enabled:
|
23 |
+
mem = self.memory_token.expand(x.size(0), -1, -1)
|
24 |
+
x = torch.cat([mem, x], dim=1)
|
25 |
x = self.transformer(x)
|
26 |
+
return x[:, 0] # Return memory token or first token
|
27 |
|
28 |
class EvoTransformer(nn.Module):
|
29 |
+
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True):
|
30 |
super().__init__()
|
31 |
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
|
32 |
self.classifier = nn.Linear(d_model, num_classes)
|
33 |
|
34 |
def forward(self, input_ids):
|
35 |
x = self.encoder(input_ids)
|
36 |
+
return self.classifier(x)
|