File size: 4,112 Bytes
1622676
09e6d66
c7678f3
 
 
 
 
 
 
 
515b961
c7678f3
5340d71
c7678f3
 
 
314d724
c7678f3
 
 
 
 
 
 
 
 
 
314d724
57ea867
c7678f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314d724
c7678f3
 
 
 
ec9b863
c7678f3
 
 
 
 
3eaea0f
 
ec9b863
c7678f3
ec9b863
c7678f3
 
 
 
 
 
314d724
c7678f3
 
 
 
 
 
 
 
 
 
 
314d724
c7678f3
314d724
c7678f3
3eaea0f
ec9b863
09e6d66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import pandas as pd
from inference import (
    evo_chat_predict,
    get_gpt_response,
    get_model_config,
    get_system_stats,
    retrain_from_feedback_csv,
    load_model,
)
import os
import csv

FEEDBACK_LOG = "feedback_log.csv"

# 🧠 Ask Evo
def ask_evo(question, option1, option2, history, user_vote):
    options = [option1.strip(), option2.strip()]
    result = evo_chat_predict(history, question.strip(), options)

    row = {
        "question": question.strip(),
        "option1": option1.strip(),
        "option2": option2.strip(),
        "evo_answer": result["answer"],
        "confidence": result["confidence"],
        "reasoning": result["reasoning"],
        "context": result["context_used"],
        "vote": user_vote or ""  # βœ… Must be named 'vote' for retraining
    }

    # Log feedback
    file_exists = os.path.exists(FEEDBACK_LOG)
    with open(FEEDBACK_LOG, "a", newline='', encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=row.keys())
        if not file_exists:
            writer.writeheader()
        writer.writerow(row)

    # Prepare outputs
    evo_output = f"Answer: {row['evo_answer']} (Confidence: {row['confidence']})\n\nReasoning: {row['reasoning']}\n\nContext used: {row['context']}"
    gpt_output = get_gpt_response(question)
    history.append(row)

    stats = get_model_config()
    sys_stats = get_system_stats()

    stats_text = f"Layers: {stats.get('num_layers', '?')} | Heads: {stats.get('num_heads', '?')} | FFN: {stats.get('ffn_dim', '?')} | Memory: {stats.get('memory_enabled', '?')} | Accuracy: {stats.get('accuracy', '?')}"
    sys_text = f"Device: {sys_stats['device']} | CPU: {sys_stats['cpu_usage_percent']}% | RAM: {sys_stats['memory_used_gb']}GB / {sys_stats['memory_total_gb']}GB | GPU: {sys_stats['gpu_name']} ({sys_stats['gpu_memory_used_gb']}GB / {sys_stats['gpu_memory_total_gb']}GB)"

    return evo_output, gpt_output, stats_text, sys_text, history

# πŸ” Manual retrain button
def retrain_evo():
    msg = retrain_from_feedback_csv()
    load_model(force_reload=True)
    return msg

# πŸ“€ Export feedback
def export_feedback():
    if not os.path.exists(FEEDBACK_LOG):
        return pd.DataFrame()
    return pd.read_csv(FEEDBACK_LOG)

# 🧹 Clear
def clear_all():
    return "", "", "", "", [], None

# πŸ–ΌοΈ UI
with gr.Blocks(title="🧠 Evo – Reasoning AI") as demo:
    gr.Markdown("## Why Evo? πŸš€ Evo is not just another AI. It evolves. It learns from you. It adapts its architecture live based on feedback.\n\nNo retraining labs, no frozen weights. This is live reasoning meets evolution. Built to outperform, built to survive.")

    with gr.Row():
        question = gr.Textbox(label="🧠 Your Question", placeholder="e.g. Why is the sky blue?")
    with gr.Row():
        option1 = gr.Textbox(label="❌ Option 1")
        option2 = gr.Textbox(label="❌ Option 2")

    with gr.Row():
        with gr.Column():
            evo_ans = gr.Textbox(label="🧠 Evo", lines=6)
        with gr.Column():
            gpt_ans = gr.Textbox(label="πŸ€– GPT-3.5", lines=6)

    with gr.Row():
        stats = gr.Textbox(label="πŸ“Š Evo Stats")
        system = gr.Textbox(label="πŸ”΅ Status")

    evo_radio = gr.Radio(["Evo", "GPT"], label="🧠 Who was better?", info="Optional – fuels evolution")

    history = gr.State([])

    with gr.Row():
        ask_btn = gr.Button("⚑ Ask Evo")
        retrain_btn = gr.Button("πŸ” Retrain Evo")
        clear_btn = gr.Button("🧹 Clear")
        export_btn = gr.Button("πŸ“€ Export Feedback CSV")

    export_table = gr.Dataframe(label="πŸ“œ Conversation History")

    ask_btn.click(fn=ask_evo, inputs=[question, option1, option2, history, evo_radio], outputs=[evo_ans, gpt_ans, stats, system, history])
    retrain_btn.click(fn=retrain_evo, inputs=[], outputs=[stats])
    clear_btn.click(fn=clear_all, inputs=[], outputs=[question, option1, option2, evo_ans, gpt_ans, stats, system, history, evo_radio])
    export_btn.click(fn=export_feedback, inputs=[], outputs=[export_table])

if __name__ == "__main__":
    demo.launch()