File size: 4,914 Bytes
1c8999c
 
785c4f7
f7f9a8a
11f2d5b
a499eab
1c8999c
 
 
 
 
 
 
a499eab
 
 
0067953
 
a499eab
 
1c8999c
 
 
 
70b5bb7
1c8999c
f7f9a8a
a499eab
1c8999c
 
 
 
a499eab
 
 
 
1c8999c
a499eab
1c8999c
 
a499eab
1c8999c
a499eab
 
 
 
 
 
 
 
 
fca1cb1
1c8999c
a499eab
5b3d26d
777a225
 
5b3d26d
a499eab
5b3d26d
777a225
5b3d26d
a499eab
14bd5d8
1c8999c
a499eab
cdd53f3
1c8999c
 
 
 
 
cdd53f3
8ed51aa
1c8999c
0067953
a499eab
 
 
 
 
 
 
 
 
 
 
0067953
a499eab
 
 
 
 
 
 
0067953
 
b50967b
1c8999c
fca1cb1
1c8999c
95db7be
1c8999c
95db7be
 
1c8999c
95db7be
1c8999c
95db7be
1c8999c
95db7be
 
 
1c8999c
fca1cb1
1c8999c
a499eab
1c8999c
 
 
 
fca1cb1
a499eab
fca1cb1
 
1c8999c
a499eab
 
 
 
 
1c8999c
b50967b
 
a499eab
 
 
 
 
 
1c8999c
 
a499eab
 
 
1c8999c
a499eab
1c8999c
a499eab
b50967b
1c8999c
a499eab
 
1c8999c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# inference.py

import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from evo_architecture import (
    build_model_from_config,
    mutate_genome,
    log_genome,
    save_best_genome,
    load_best_genome
)
import random
import csv
import os
import psutil
import platform
import GPUtil
import openai
import pandas as pd

# ๐Ÿ” Load OpenAI key
openai.api_key = os.getenv("OPENAI_API_KEY", "sk-...")

# โš™๏ธ Runtime setup
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# ๐Ÿ” Mutable model & config
current_config = load_best_genome()
model = build_model_from_config(current_config).to(device)
model.eval()

FEEDBACK_LOG = "feedback_log.csv"

# ๐Ÿง  Evo prediction
def evo_chat_predict(history, question, options):
    inputs = [f"{question} {opt}" for opt in options]
    enc = tokenizer(inputs, padding=True, truncation=True, max_length=128, return_tensors="pt").to(device)
    with torch.no_grad():
        logits = model(enc["input_ids"])
        probs = torch.sigmoid(logits).squeeze().tolist()
    best_idx = int(torch.argmax(torch.tensor(probs)))
    reasoning = f"{options[0]}: {probs[0]:.3f} vs {options[1]}: {probs[1]:.3f}"
    return {
        "answer": options[best_idx],
        "confidence": round(probs[best_idx], 3),
        "reasoning": reasoning,
        "context_used": question
    }

# ๐Ÿค– GPT comparison
def get_gpt_response(prompt):
    try:
        client = openai.OpenAI()
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": prompt}]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"(GPT Error) {e}"

# ๐Ÿ“Š Evo stats
def get_model_config():
    return {
        "num_layers": current_config.get("num_layers", "?"),
        "num_heads": current_config.get("num_heads", "?"),
        "ffn_dim": current_config.get("ffn_dim", "?"),
        "memory_enabled": current_config.get("memory_enabled", "?"),
        "accuracy": current_config.get("accuracy", "N/A")
    }

# ๐Ÿ–ฅ๏ธ System info
def get_system_stats():
    mem = psutil.virtual_memory()
    cpu = psutil.cpu_percent()
    try:
        gpus = GPUtil.getGPUs()
        gpu = gpus[0] if gpus else None
        gpu_name = gpu.name if gpu else "N/A"
        gpu_mem_used = round(gpu.memoryUsed / 1024, 2) if gpu else 0
        gpu_mem_total = round(gpu.memoryTotal / 1024, 2) if gpu else 0
    except:
        gpu_name, gpu_mem_used, gpu_mem_total = "N/A", 0, 0

    return {
        "device": device.type,
        "cpu_usage_percent": cpu,
        "memory_used_gb": round(mem.used / 1024**3, 2),
        "memory_total_gb": round(mem.total / 1024**3, 2),
        "gpu_name": gpu_name,
        "gpu_memory_used_gb": gpu_mem_used,
        "gpu_memory_total_gb": gpu_mem_total,
        "platform": platform.platform()
    }

# ๐Ÿ” Retrain from feedback
def retrain_from_feedback_csv():
    global current_config, model

    if not os.path.exists(FEEDBACK_LOG):
        return "โš ๏ธ No feedback log found."

    df = pd.read_csv(FEEDBACK_LOG)

    # Validate votes
    if df.empty or "vote" not in df.columns or df["vote"].dropna().empty:
        return "โš ๏ธ No usable feedback data. Please vote on Evo or GPT."

    df = df[df["vote"].isin(["Evo", "GPT"])]
    if df.empty:
        return "โš ๏ธ No usable feedback data. Please vote on Evo or GPT."

    # Prepare training data
    data = []
    for _, row in df.iterrows():
        label = 1 if row["vote"] == "Evo" else 0
        text = f"{row['question']} {row['option1']} {row['option2']}"
        data.append((text, label))

    if not data:
        return "โš ๏ธ No usable feedback data."

    # Mutate config
    new_config = mutate_genome(current_config)
    model = build_model_from_config(new_config).to(device)
    current_config = new_config
    log_genome(new_config)

    # Fine-tune model
    model.train()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    for epoch in range(3):
        random.shuffle(data)
        for text, label in data:
            enc = tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt").to(device)
            input_ids = enc["input_ids"]
            label_tensor = torch.tensor([label], dtype=torch.float32).to(device)
            logits = model(input_ids).squeeze(1)
            loss = F.binary_cross_entropy_with_logits(logits, label_tensor)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

    model.eval()
    save_best_genome({**new_config, "accuracy": "Live-Finetuned"})
    return f"โœ… Evo retrained on {len(data)} feedback entries."

# ๐Ÿ”„ Reload model
def load_model(force_reload=False):
    global model
    model.eval()