Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +37 -40
inference.py
CHANGED
@@ -1,75 +1,72 @@
|
|
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoTokenizer
|
3 |
-
from evo_model import EvoTransformerV22
|
4 |
from search_utils import web_search
|
5 |
import openai
|
6 |
-
import
|
7 |
-
|
8 |
-
# GPT Setup
|
9 |
-
openai.api_key = os.getenv("OPENAI_API_KEY") # π Load securely from environment
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
model.load_state_dict(torch.load("trained_model/evo_retrained.pt", map_location="cpu"))
|
21 |
-
print("π Loaded retrained Evo model.")
|
22 |
-
elif os.path.exists("trained_model/evo_pretrained.pt"):
|
23 |
-
model.load_state_dict(torch.load("trained_model/evo_pretrained.pt", map_location="cpu"))
|
24 |
-
print("π¦ Loaded pretrained Evo model.")
|
25 |
-
elif os.path.exists("evo_hellaswag.pt"):
|
26 |
-
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu"))
|
27 |
-
print("π₯ Loaded default Evo model.")
|
28 |
-
else:
|
29 |
-
raise FileNotFoundError("β No Evo model file found.")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
def get_evo_response(query, options, user_context=""):
|
|
|
|
|
|
|
38 |
context_texts = web_search(query) + ([user_context] if user_context else [])
|
39 |
context_str = "\n".join(context_texts)
|
40 |
input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options]
|
41 |
|
|
|
42 |
scores = []
|
43 |
for pair in input_pairs:
|
44 |
-
encoded = tokenizer(pair, return_tensors="pt",
|
45 |
with torch.no_grad():
|
46 |
-
|
47 |
-
score = torch.sigmoid(
|
48 |
scores.append(score)
|
49 |
|
50 |
best_idx = int(scores[1] > scores[0])
|
51 |
return (
|
52 |
-
options[best_idx],
|
53 |
-
max(scores),
|
54 |
-
f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}", #
|
55 |
-
context_str
|
56 |
)
|
57 |
|
58 |
-
|
59 |
def get_gpt_response(query, user_context=""):
|
60 |
try:
|
61 |
context_block = f"\n\nContext:\n{user_context}" if user_context else ""
|
62 |
response = openai.chat.completions.create(
|
63 |
model="gpt-3.5-turbo",
|
64 |
-
messages=[
|
65 |
-
{"role": "user", "content": query + context_block}
|
66 |
-
],
|
67 |
temperature=0.7,
|
68 |
)
|
69 |
return response.choices[0].message.content.strip()
|
70 |
except Exception as e:
|
71 |
return f"β οΈ GPT error:\n\n{str(e)}"
|
72 |
|
73 |
-
# β
|
74 |
def infer(query, options, user_context=""):
|
75 |
return get_evo_response(query, options, user_context)
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
from transformers import AutoTokenizer
|
5 |
+
from evo_model import EvoTransformerV22
|
6 |
from search_utils import web_search
|
7 |
import openai
|
8 |
+
import time
|
|
|
|
|
|
|
9 |
|
10 |
+
# π Load OpenAI API Key securely
|
11 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
12 |
|
13 |
+
# π Track model changes
|
14 |
+
MODEL_PATH = "evo_hellaswag.pt"
|
15 |
+
last_mod_time = 0
|
16 |
+
model = None
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# π¦ Load model with auto-reload if file is updated
|
20 |
+
def load_model():
|
21 |
+
global model, last_mod_time
|
22 |
+
current_mod_time = os.path.getmtime(MODEL_PATH)
|
23 |
+
if model is None or current_mod_time > last_mod_time:
|
24 |
+
model = EvoTransformerV22()
|
25 |
+
model.load_state_dict(torch.load(MODEL_PATH, map_location="cpu"))
|
26 |
+
model.eval()
|
27 |
+
last_mod_time = current_mod_time
|
28 |
+
print("π Evo model reloaded.")
|
29 |
+
return model
|
30 |
|
31 |
+
# π§ Evo decision logic with confidence scores
|
32 |
def get_evo_response(query, options, user_context=""):
|
33 |
+
model = load_model()
|
34 |
+
|
35 |
+
# Retrieve RAG context + optional user input
|
36 |
context_texts = web_search(query) + ([user_context] if user_context else [])
|
37 |
context_str = "\n".join(context_texts)
|
38 |
input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options]
|
39 |
|
40 |
+
# Encode both options and compute scores
|
41 |
scores = []
|
42 |
for pair in input_pairs:
|
43 |
+
encoded = tokenizer(pair, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
44 |
with torch.no_grad():
|
45 |
+
logits = model(encoded["input_ids"])
|
46 |
+
score = torch.sigmoid(logits).item()
|
47 |
scores.append(score)
|
48 |
|
49 |
best_idx = int(scores[1] > scores[0])
|
50 |
return (
|
51 |
+
options[best_idx], # πΉ Selected answer
|
52 |
+
max(scores), # πΉ Confidence score
|
53 |
+
f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}", # πΉ Reasoning trace
|
54 |
+
context_str # πΉ Context used
|
55 |
)
|
56 |
|
57 |
+
# π€ GPT-3.5 backup or comparison
|
58 |
def get_gpt_response(query, user_context=""):
|
59 |
try:
|
60 |
context_block = f"\n\nContext:\n{user_context}" if user_context else ""
|
61 |
response = openai.chat.completions.create(
|
62 |
model="gpt-3.5-turbo",
|
63 |
+
messages=[{"role": "user", "content": query + context_block}],
|
|
|
|
|
64 |
temperature=0.7,
|
65 |
)
|
66 |
return response.choices[0].message.content.strip()
|
67 |
except Exception as e:
|
68 |
return f"β οΈ GPT error:\n\n{str(e)}"
|
69 |
|
70 |
+
# β
Final callable interface
|
71 |
def infer(query, options, user_context=""):
|
72 |
return get_evo_response(query, options, user_context)
|