Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +8 -6
evo_model.py
CHANGED
|
@@ -6,23 +6,25 @@ class EvoEncoder(nn.Module):
|
|
| 6 |
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
|
| 7 |
super().__init__()
|
| 8 |
self.embedding = nn.Embedding(30522, d_model)
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
| 12 |
-
self.norm = nn.LayerNorm(d_model)
|
| 13 |
self.memory_enabled = memory_enabled
|
| 14 |
if memory_enabled:
|
| 15 |
self.memory_proj = nn.Linear(d_model, d_model)
|
| 16 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
| 17 |
|
| 18 |
def forward(self, input_ids):
|
| 19 |
-
x = self.embedding(input_ids)
|
| 20 |
if self.memory_enabled:
|
| 21 |
mem = self.memory_token.expand(x.size(0), -1, -1)
|
| 22 |
x = torch.cat([mem, x], dim=1)
|
| 23 |
x = self.transformer(x)
|
| 24 |
-
x
|
| 25 |
-
return x[:, 0] # Return [CLS]-like token (memory or first token)
|
| 26 |
|
| 27 |
class EvoTransformer(nn.Module):
|
| 28 |
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True):
|
|
|
|
| 6 |
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
|
| 7 |
super().__init__()
|
| 8 |
self.embedding = nn.Embedding(30522, d_model)
|
| 9 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
| 10 |
+
d_model=d_model,
|
| 11 |
+
nhead=num_heads,
|
| 12 |
+
dim_feedforward=ffn_dim,
|
| 13 |
+
batch_first=True
|
| 14 |
+
)
|
| 15 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
|
|
|
| 16 |
self.memory_enabled = memory_enabled
|
| 17 |
if memory_enabled:
|
| 18 |
self.memory_proj = nn.Linear(d_model, d_model)
|
| 19 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
| 20 |
|
| 21 |
def forward(self, input_ids):
|
| 22 |
+
x = self.embedding(input_ids)
|
| 23 |
if self.memory_enabled:
|
| 24 |
mem = self.memory_token.expand(x.size(0), -1, -1)
|
| 25 |
x = torch.cat([mem, x], dim=1)
|
| 26 |
x = self.transformer(x)
|
| 27 |
+
return x[:, 0] # Return memory token or first token
|
|
|
|
| 28 |
|
| 29 |
class EvoTransformer(nn.Module):
|
| 30 |
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True):
|