EvoTransformer-Demo / README.md
HemanM's picture
Update README.md
303646a verified
metadata
title: EvoTransformer Demo
emoji: 🧬
colorFrom: pink
colorTo: green
sdk: gradio
app_file: app.py
pinned: false
license: mit
sdk_version: 5.36.2

🧬 EvoTransformer Demo

Welcome to the official demo of EvoTransformer β€” an evolving Transformer architecture built to adapt itself during training using principles inspired by evolutionary algorithms.

This project showcases a lightweight, in-training neural architecture search (NAS) system that mutates key traits such as:

  • Number of layers
  • Attention heads
  • Feed-forward dimension
  • Dropout
  • Memory module toggle

πŸ“ Developed by Dr. Heman Mohabeer, Intelligent Africa Ltd
πŸ“€ Submitted to JMLR 2025 | 🌍 Built from Mauritius


πŸš€ Try It Live

Use the Gradio interface to simulate architectural evolution across generations.
Visualize how traits adapt β€” and get a simulated accuracy + parameter estimate.


πŸ“Š Behind the Scenes

EvoTransformer includes:

  • Genetic operators: mutation, crossover (demo limited to mutation)
  • Structural traits representation
  • Online evolution loop
  • Lightweight scoring and parameter estimation

This demo is a simplified, live-running version of the full EvoTransformer system submitted for peer review.


πŸ“š Citation

@misc{mohabeer2024evotransformer,
  title={EvoTransformer: In-Training Evolution of Transformer Architectures for Adaptive and Efficient NLP},
  author={Heman Mohabeer},
  year={2024},
  note={Hugging Face Demo},
  url={https://huggingface.co/spaces/HemanM/EvoTransformer-Demo}
}

---

## πŸ”— Links

- πŸ“„ [JMLR Submission PDF (coming soon)]()
- 🧠 [Colab Notebook (in progress)]()
- πŸ“˜ [More from Dr. Heman Mohabeer](https://linkedin.com/in/hemanmohabeer)

---

## πŸ“œ License

MIT License β€” feel free to use, fork, and build upon this demo.